
Building and Disseminating Databases at the
Kentucky Geological Survey

2017 Data Preservation Workshop, Salt Lake City, UT
Doug Curl & Elizabeth Adams

doug@uky.edu / eladam2@uky.edu

SQL

Online

Services

KGS IT / Data Infrastructure:
• Database Records:
 Over 16 million records – populated since ~1970’s

 Relational Database (SQL)

• Document Scanning and Archiving:
• Oil and gas documents: 770,000+ scanned (page-sized and elogs)

• Publications: 7000+ scanned documents

• Past research documents (field notes, data sheets)

• Water well and spring documents*: ~800,000 documents
 *from KY Division of Water – no KGS scanning

Background | Data Structure | Building a database | Populating a database | Conclusion

Notes
Emphasize this is a relational database

KGS Website:

• Via KGS website: static and dynamic web pages and services

• Since 1996: KGS has had a website – one of most popular at UK

• Since 2001: started development of dynamic and internet map services

• Access to KGS database records and GIS data

• Access to scanned documents

• All data and map services provided at no cost to users

Geologic information:
Rocks and minerals … Fossils … General KY Geology … Geoscience Education Resources … Geologic Mapping … Coal Research … Oil
and Natural Gas Research … Carbon Sequestration … Karst Information … Groundwater Research … Earthquakes … Landslides …
Foundation Engineering

Data services:
Publications and maps catalog … Oil and gas well records … Water wells and springs records … Groundwater quality … Coal
borehole … Coal thickness and quality measurements … Well sample and core holdings … KYTC geotechnical data … KGS photos
and images … Geologic descriptions … Coordinate conversion … GIS map services and downloads

Map Services:
Geologic Map Service (Oil and gas wells…Water wells and springs…Coal data…Sinkholes…Landslides…Non-coal minerals and quarries…Core
holdings…Outcrops) … Water Wells and Springs … Groundwater Quality … Coal Resource Information … Minerals Information …
Kentucky Arches … Oil and Gas Permits … Class I and Class II Wells … Kentucky Energy Infrastructure … Landslide Information …
Story Map Tours

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
And then, providing that data to the public primarily through web services.
Since 1996 – had website – then added dynamic searching of our databases in 2001
Reduced need to see records here – esp as efforts to digitize and archive data continued and more data was added:
Geologic map data
Oil and gas data

Data Structure

2 basic types – both are valid as databases

Flat File Database

• Single table of data

• Contains files, records, fields

Data Records:
Field A: string

Field B: numeric

Field C: blob

Row

C
o

lu
m

n

Data File:

Relational Database

• Multiple tables

• Records cross-referenced between
tables (related)

Data Records:
Field Primary Key

Field A: string

Field B: numeric

Field C: blob

Row

C
o

lu
m

n
 Data Records:

Field Primary Key

Field Foreign Key

Field A: string

Field B: numeric

Field C: blob

Row

C
o

lu
m

n

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Flat file – a spreadsheet of data

Data Structure
Flat File vs Relational Database

Background | Data Structure | Building a database | Populating a database | Conclusion

Data Structure
Flat File vs Relational Database

Benefits:

• Simple design

• Simple format (no interpreter
software required)

• Easy to populate

• Easy to transport (email, etc)

• Easy to read

• Can be useful for very large
unstructured datasets (lots
of records)

Considerations:

• Duplicate data

• Many fields

• Prone to data inconsistencies

• Merging data difficult

• Searching / analysis can be difficult

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Flat file – a spreadsheet of data.
Disadvantage of flat file is that an attribute must be changed throughout table. Flat files may be useful for sensor data or raw data storage - data not requiring modification.

Data Structure
Flat File vs Relational Database

Background | Data Structure | Building a database | Populating a database | Conclusion

“Foreign key”: relates to PK - can have duplicates

“Primary key”: unique identifiers

Sticky Note
Relational database:
Tables relate to each other through “primary keys”.
Data are stored once for each entity:
One site. One location. One event.

Data Structure
Flat File vs Relational Database

Benefits:

• Efficient / less redundant
data storage

• Can index records

• Robust / powerful querying
• Easier to manage inserts,

updates, deletes

• Server access: higher security

• Network access

Considerations:

• Complex design

• Takes planning – build a model

• Software needed (SQL, Oracle,
MySQL, Access, etc)

• Careful data population

• Must maintain primary/foreign key
relationships

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Benefits/Considerations – Relational databases:
Must maintain relationships. If a record is deleted. All the related data must be deleted.
Software is required to maintain relational database.

Design and build a database structure (schema/model)…

• Need database software/service – pick a flavor

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Database software – some are free, some are not.
Lots of options – enterprise and expensive, free and open, web services (some databases offer auto management and services to clients), and cloud services.

Building a data structure:

flat data to relational database: example with KGS limestone sites database

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Example using the KGS limestone database of sites and sampling events to migrate data into a relational database.
This is an example to illustrate the utility of a relational database over a flat file – not suggesting this is how it would actually be done – because it could get complicated!
These sites visited over 65 years around Kentucky – quarries, mines, and outcrops – to characterize stratigraphy of rocks, take chemistry samples, etc. Sites have events (e.g., sampling/visiting events).

Flat data to relational database… a journey

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Examine this table of sites and locations and events – start to break it out and notice a few things:
- Data repeats – so if needed to change one location, site name, etc. - have to change many values by searching through database to make changes.

Identify “data segments” in flat data (or unstructured data)

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Break out the data into entities that could be stored in different tables and related to each other and other associated data.

Design and build a database structure (schema/model)…

• Need database software – pick a flavor

• Design and build table schemas with primary and foreign keys

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Describe a relational database:
Tables relate to each other through “primary keys”
Store data once for each entity:
One site. One location. One event.

Migrate data from flat tables / populate tables in the relational database

**maintain relationships with primary - to - foreign keys!

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Migrate that data into relational tables:
this is not easy to do from a flat table – this is just illustrating the difference in data structures
If you did it this way, would need to write a code to parse out (Python) to iterate over the records, assign primary keys, etc. This conversion process would need to be planned out, to populate the tables.

Background | Data Structure | Building a database | Populating a database | Conclusion

Methods for populating a relational database

Background | Data Structure | Building a database | Populating a database | Conclusion

Populating a relational database

 Spreadsheet conversion: somewhat “brute” force
 - deal with existing data

 - one-time processing

Sticky Note
Populating – Spreadsheet conversion. Somewhat brute force method – can use tools in Excel to create Master / Child tables. Use remove duplicates tool and assign primary keys.

Background | Data Structure | Building a database | Populating a database | Conclusion

Populating a relational database

 Spreadsheet conversion: import into a software like Access – less brute force
 - query table to build new tables

 - deal with existing data

 - one-time processing

Sticky Note
Populating – Spreadsheet conversion. Import spreadsheet - Use Access tools – made for making relational databases.
Remove duplicates tool. Assign primary keys.

Background | Data Structure | Building a database | Populating a database | Conclusion

Populating a relational database

 Spreadsheet conversion: write a program (Python, VB, etc) to parse table
 - requires programming

 - can re-use

 - could be efficient means for population

Sticky Note
Populating – table conversion – Python, Model builder in ArcGIS.

Background | Data Structure | Building a database | Populating a database | Conclusion

Populating a relational database

 Direct data entry:
 - can plan model and enter into datasheet views

 - fast setup for data entry

 - prone to data inconsistencies / errors & may not be very flexible for deployment

Sticky Note
Populating – Spreadsheet conversion.
Import spreadsheet - Use Access tools – made for making relational databases.
Remove duplicates tool. Assign primary keys.

Background | Data Structure | Building a database | Populating a database | Conclusion

Populating a relational database

 Access (or similar) forms: easy to use front-end / requires setup
 - long-term use, reduce data entry error, inexperienced users, less-flexible deployment

 - incorporate other processes (this one converts and moves scanned images)

Sticky Note
Populating – Access forms:
Have to build, but great way to make foolproof data entry.
Backend can be complicated – but do it once, and can deploy to lots of users.
Can control the data entry to reduce issues.

Populating a relational database

 Web forms: easy to use front-end / may require extensive programming
 - long-term use, reduce data entry error, inexperienced users, flexible deployment

 - need to host on a server or via web services

Background | Data Structure | Building a database | Populating a database | Conclusion

Sticky Note
Populating – Web Forms:
Have to build, but great way to make foolproof data entry.
Backend can be complicated – but do it once, and can deploy to lots of users.
Can control the data entry to reduce issues.

Populating a relational database

 Cloud web services: relatively new frontier - lots of options
 - launch relatively quickly, no hardware/software maintenance

 - data maintenance / entry tools available, long term use (just pay the fee!), flexible deployment

 - depending on service – may not be clear on how data is stored – but, do you care?

Background | Data Structure | Building a database | Populating a database | Conclusion

Why build a relational database?

• Organize and sustain your related data

• Typically server-based: centralize and serve to organization / public
 Bonus: can secure your data

• Can export data into “flat tables” using queries

• Can make “views” to simplify data visualization

But:

• Careful planning / knowing your data is essential

• Helpful skills:
 programming (SQL, Python, VB, etc)
 server hardware / software knowledge
 spreadsheet wrangling

Background | Data Structure | Building a database | Populating a database | Conclusion

KGS IT / Data Infrastructure:
• In-house data storage:

• SQL server 2014 (virtualized Win Server 2012) – relational database

• File server (virtualized Win Server 2012)

• Data Management:
• Microsoft Suite (Excel, Access, etc)

• Adobe Suite (Acrobat, Photoshop, Illustrator)

• ArcGIS

• ResourceSpace (newbies)

• ArcGIS Server / ArcGIS Online org account

• Web Presence:
• IIS (virtualized Win Server 2008)

• Backend: ASP classic / PHP

• Frontend: HTML 5 (Javascript/HTML/CSS / Dojo, JQuery, Highcharts, etc)

• ESRI Javascript API (map services)

Background | Data Structure | Building a database | Populating a database | Conclusion

Thanks!

Background | Data Structure | Building a database | Populating a database | Conclusion

Biggest benefit for KGS: Data Dissemination

Sticky Note
The data in this service are all related in a SQL database on the backend – disseminated to the public with the Javascript API, ASP, etc – very easy to do with a relational database.

