

Expanding the scope of restoration monitoring: Practical methods for amphibians

Bethany K. Kunz¹, J. Hardin Waddle¹, Nicholas S. Green², and Michael J. Hooper¹

¹U.S. Geological Survey

²Waterborne Environmental, Inc.

DOI ORDA Science Webinar Series October 30, 3:00 p.m. Eastern

U.S. Department of the Interior U.S. Geological Survey

Importance and status of amphibians

Ecosystem services

- Provisioning
- Cultural
- Regulating
- Supporting

Indiana hardwoods restoration monitoring project

Bell and Holden (The Nature Conservancy)

Deetz Nature
Preserve
(New Haven Parks & Recreation)

Bluffton Native Habitat Waterway (City of Bluffton)

Indiana hardwoods restoration monitoring project

Goal: Assess the progress and effectiveness of afforestation performed as part of NRDA and EPA restorations

- Evaluate a broad range of ecological elements Soils, vegetation, trees, wildlife communities (invertebrate, amphibian, avian, mammal)
- Apply a range of methods from thorough (labor intensive and expensive) to rapid (labor sparse and not expensive)
- Evaluate information gained vs. level-of-effort to determine detail required to assess restoration progress and management needs

Key questions

- 1. What amphibian methods are good candidates?
- 2. Which methods detect the greatest observed amphibian species richness?
- 3. Which methods have the greatest catch per unit effort (CPUE)?
- 4. What are the relative costs?
- 5. How can automated recording units (ARUs) be used most effectively?

What amphibian methods are good candidates?

Selected amphibian methods

Automated recording units (ARUs)

Diurnal visual encounter surveys (VES)

Nocturnal aquatic transects

Amphibian rapid assessment (RA)

Amphibian methods Site example

Bluffton

Striking a balance

Method comparison

Which methods detect the most species? Observed species richness

13 species (62% of species present in area, 93% of species present and likely to be detectable)

2016

- RA- 9 species (3 unique)
- ARUs- 7 species (1 unique)
- Nocturnal surveys- 7 species (1 unique)
- Diurnal VES- 2 species (0 unique)

Which methods have the greatest catch per unit effort (CPUE)?

Automated recording units (ARUs)

Amphibian rapid assessment	(RA) 2015	6.29 animals per person-hou
-----------------------------------	-----------	-----------------------------

Nocturnal aquatic transects 4.88 animals per person-hour

Amphibian rapid assessment (RA) 2016 3.06 animals per person-hour

Diurnal visual encounter surveys (VESs) 0.10 animals per person-hour

What are the relative costs?

Per-site calculations

GS-05	Team	Member
-------	------	--------

		GS-11 Team Leader			
Method	Sampling effort	Equipment costs per site	Total personnel cost	Total cost per site	
ARUs	March-Sept	\$1,233	\$314	\$1,547	
RAs	One visit	\$30	\$161	\$191	
Nocturnal surveys	Two rounds	\$499	\$71	\$570	
Diurnal VES	Two rounds	\$429	\$261	\$690	

How can ARUs be used most effectively?

Automated computer recognition of calls

How can ARUs be used most effectively?

Level of effort analysis with acoustic data

Dataset of date, time and location of all verified calls

Sample-based rarefaction

264,000 simulated surveys Fit 32 models of observed species richness as a function of survey effort

7 to 175 nights
1 to 8 hours per night
1 to 5 min per hour

How can ARUs be used most effectively?

Level of effort analysis with acoustic data

Dataset of date, time and location of all verified calls

Take home message: Maximize observed species richness by increasing nights sampled, rather than hours per night or minutes per hour

1 to 8 hours per night 1 to 5 min per hour

Practical considerations Amphibian rapid assessment (RA)

- Effective and economical
- May be particularly useful in early stages of monitoring or as a supplement to other methods (limited utility for full-scale monitoring)
- Conduct several times/year, based on life history of relevant species
- Great potential for citizen science involvement

Practical considerations Automated recording units (ARUs)

Benefits

- Generate large volumes of data with minimal in-field time
- Benefits of automated analysis
- Sharing/reuse of recorders and recognizer files
- Can be deployed with recording programs targeting both amphibians and birds

Practical considerations Automated recording units (ARUs)

Challenges

- Larger up-front investment (recorders, software*)
- Time required to create recognizer files
- Trade-off between false positives and false negatives
- Cannot provide information on non-vocal amphibians (i.e., salamanders)

*Song Scope now available for free Kaleidoscope Pro \$299-\$399/year Other software available

Other lessons learned for compensatory restorations

- Availability of surface water will influence success of most methods
- Randomly placed diurnal transects may be less effective when densities are low

Logistically reasonable tools can be used within the context of a larger monitoring plan to capture valuable information about amphibian recovery

Contact:

Bethany Kunz

Email: bkunz@usgs.gov

Phone: 573-441-2998

Integrated Environmental Assessment and Management — Volume 00, Number 00—pp. 1–15
Received: 5 February 2019 | Returned for Revision: 19 March 2019 | Accepted: 30 July 2019

Special Series

Amphibian Monitoring in Hardwood Forests: Optimizing Methods for Contaminant-Based Compensatory Restorations

Bethany K Kunz,*† J Hardin Waddle, † and Micholas S Green†\$ 115 Geological Survey, Columbia Environmental Research Center, Columbia, Missour ;US Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida jPresent address: Waterborne Environmental, Inc, Leesburg, Vinginia, USA

IEAM Paper:

https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/ieam.4202

Data release: https://doi.org/10.5066/P9SFRUZJ

Special thanks to:

Restoration Partners

D. Sparks and S. Fetters-USFWS

N. Herbert, E. Jacquart, and A.

Sturdevant-The Nature Conservancy

D. Sundling-City of Bluffton

A. Gurney-City of New Haven

Field Assistants

A. Gutierrez

N. Fischer

A. Hoffman

C. Mackey

Additional Collaborators and Reviewers

V. McDonald

J. Isanhart

L. Muse

M. Struckhoff

J. Towns-Campbell

M. Huston

S. Walls

