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In this module I consider an example where randomized experiments
were used to study effects. Here | try to show how SEM permits
additional understanding to be developed.

An appropriate citation for this material is

Whalen, M.A., Duffy, J.E. and Grace, J.B. 2013. Temporal shifts in
top-down versus bottom-up control of epiphytic algae in a seagrass
ecosystem. Ecology 94:510-520.

Notes: IP-056512; Support provided by the USGS Climate & Land
Use R&D and Ecosystems Programs. | would like to acknowledge
formal review of this material by Jesse Miller and Phil Hahn,
University of Wisconsin. Many helpful informal comments have
contributed to the final version of this presentation. The use of trade
names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.
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Source: https://www.usgs.gov/centers/wetland-and-aquatic-research-
center/science/quantitative-analysis-using-structural-equation







Example: Complex ecological forcing in eelgrass beds:

A global, comparative-experimental approach
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These data come from a global experiment being conducted on
seagrasses.




Data from:
Field-based Experimental Study of the Importance of
Small Herbivores in a Seagrass Ecosystem:

Matthew A Whalen and J Emmett Duffy

Whalen, Duffy, and Grace, 2013. Ecology 94:510-520.
(http://www.esajournals.org/doi/abs/10.1890/12-0156.1)
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More specifically, these are from a study in Virginia.




York River, Virginia:
Major herbivores are invert crustaceans -
these grazers control epiphytes and promote the
eelgrass
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It is all about microcrustaceans grazing on the epiphytes that live on
eelgrasses, a particularly important seagrass.

If grazers don’t keep epiphytes grazed down, they lead to the death of
the seagrasses, causing the base of the ecosystem to collapse.




The Big Question ZUSGS

Are seagrasses controlled by bottom-up forces
or trophic cascade?
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- Subtext: Is nutrient runoff or overﬁs@g\
causing seagrass declines? S

Part of the big deal is a question of what may be causing eelgrass
declines worldwide and the broader implications of this issue.




Preliminary Study: Aflffor
Virginia site Poles

Experimental Design:
Treatments:
- pesticide Nutrient
- nutrient addition Diffuser
- combination ) b ©
- controls 0 ©,
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Here is the part of the experimental study discussed in this example.




A Primary ANOVA result:
Means for pesticide effect on epiphytes
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Anova results provide limited information.




[lustration of ANOVA-type model

# Read Whalen Seagrass Data
w.dat <- read.csv("WhalenData.csv")

# ANOVA Model
anovaModel <- 'epiphytes ~ pesticides'

Pesticide |

A 4
Epiphytes

© We are using slightly
=2 USGS different notation here.

An anova, in its most basic form, is a very simple model. The
simplicity is created by the physical control in combination with
randomization.




[ustration of ANOVA-type model (cont.)

# Fit ANOVA Model
anovaFit <- sem(anovaModel, data=w.dat)

# Get Results
summary (anovaFit, standardized=T, rsqg=T)

Est SE Z P Std.all
Regressions:
epiphytes ~
pesticides 0.998 0.154 6.48 0.000 0.716

Variances:
epiphytes 0.227 0.051 0.488
R-Square:
epiphytes 0.512
9
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Here are the net-effect results. Note that the information extracted is
similar to that obtained from an ANOVA. The main difference is that
we are now treating treatment levels as points on a continuum
(regression perspective) instead of simply testing for whether treatment
means differ.




Results

Pesticide
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And shown graphically.
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[llustration of ANCOVA-type model

Pesticide

Macroalgae Grass den.

Epiphytes

covariates

Note: in ANCOVA, covariates are not allowed to correlate with
treatment variables. 1

There are two covariates in this study, a macro alga and the density of
eelgrass. We have not anticipation about what the macroalgae might
do, but we expect greater eelgrass density to promote epiphytes by
buffering water movement and physical damage to epiphytes.

In ANCOVA, the covariates are supposed to be uncorrelated with the
treatment, which holds true in this case.
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[llustration of ANCOVA-type model

# Simple ANCOVA Model
ancovaModel <- 'epiphytes ~ pesticides
+ macroalgae + grass’

| Macroalgae |—>| Epiphytes |1—{ Grass den. |

A ssimple ANCOVA here.
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Results (visual)

Pesticide
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1. Variance explanation for epiphytes improves.
2. Grass density promotes epiphyte development.
3. Macroalgae have nonsignificant negative effect on epiphytes.
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And the results
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The test of mediation

Does reduction of Gammarids explain promotion of epiphytes by

pesticide?
Pesticide note that Gammarids
are class of

crustations whose
abundance is most
strongly reduced by
the pesticide.

& USGS
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Here we perform the test of mediation with one of the
microcrustaceans, the Gammarids.
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Lavaan code and results

# SEM Model 1 “seml”

gammarids ~ pesticide'

seml <- 'epiphytes ~ macroalgae + grass + gammarids

Chi-square 26.499
Degrees of freedom 3
P-value 0.000

# Select Modification Indices
gammarids ~ macroalgae 14.726

/

So, we should add path from
macroalgae to gammarids.
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Pesticide

A 4

Gammarids

A 4
Epiphytes I<—-| Grass den.

Results suggest something missing from model.
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Modifying our model: adding needed linkages

Pesticide

A 4
Gammarids
©2

| Macroalgae I—bl Epip‘}:ytes ]<—[ Grass den. I

# New Model - SEM Model 2 “sem2”

sem2 <- 'epiphytes ~ macroalgae + grass + gammarids
gammarids ~ pesticide + macroalgae'

An important discovery is an effect of macroalgae on Gammarids.
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Results

Chi-square 8.136
Degrees of freedom 2
P-value 0.017

# Chi-square difference test
anova(seml.fit, sem2.fit)

Chisq-diff = 18.363,
df-dif = 1
p = < 0.001

# Select Modification Indices

gammarids ~ grass 3.319
epiphytes ~ pesticide 4.205
2 USGS v

Model still missing another link, though the link added in model 2
definitely improved model fit dramatically. Modification indices
suggest a remaining direct path from pesticide to epiphytes.
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We can go further.

What is mediating the remaining effect of pesticide on epiphytes?

w What about

Caprellids?
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Now we bring in the second most abundant type of micrograzer.
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Our final model — complete mediation of pesticide.

Pesticide

Gammarids | I Caprellids

Grass den.
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Finally, a fully-mediate model.
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What if we wanted to include some constraits?

Here we force the correlations between treatment and covariates to
equal 0.

=I

Pesticide [«

=0 Gammarids | | Caprellids =0

Here we simple demonstrate setting exogenous correlations to zero.

this permits more pure causal attribution (if it holds).
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“sem5” model and results

2USGS

# SEM Model 5 “sem5”

+ caprellids

pesticide ~~ O*grass’'

sem5.£fit <- sem(sem5, data=w.dat,

sem5 <- 'epiphytes ~ macrocalgae + grass + gammarids

gammarids ~ pesticide + macroalgae
caprellids ~ pesticide + macroalgae
pesticide ~~ O*macroalgae

fixed.x=F)
4

# Chi-square difference test
anova (semd4.fit, sem5.fit)

Chisg-diff = 1.363
df-dif = 3
P = highly ns

# noée we must
declare
“fixed.x=FALSE"”
to work with
exogenous .
correlations.

Code in red shows how we set correlations to zero.
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Final accepted model

We have now explained our
treatment effect, a major

aspiration of our modeling.

Macroalgae

Chi-square =
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Gammarids

Caprellids We show paths
'\. from Grass den

to illustrate we
tested them
(optional).

5.432, df = 5, p = 0.366
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Final model.
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Results
Est. Std.err 2Z-val P(>|z]|) Std.all
Regressions:
epiphytes ~
macroalgae 0.105 0.040 2.612 0.009 0.290
grass 0.405 0.100 4.034 0.000 0.389
gammarids -0.329 0.057 <=35.828 0.000 -0.663
caprellids -0.240 0.085 -2.834 0.005 =0.335
gammarids ~
pesticide -2.053 0.215 -9.570 0.000 -0.748
macroalgae 0.304 0.057 5.347 0.000 0.418
grass 0.315 0.164 1.922 0.055 0.150
caprellids ~
pesticide -0.748 0.231. =3.239 0.001 -0.393
macroalgae 0.243 0.061 3.965 0.000 0.481
grass 0.231 0.176 1.31% 0.190 0.159
R-Square:
epiphytes 0.645
gammarids 0.756 -
caprellids 0.411 -

Here are the details of the estimates. Shown are raw parameter
estimates (Est.), their standard errors (Std.err), associated Z-values
(which are like likelihood-based t-values, the probabilities associated
with the Z-values (P(>\z\), and the standardized parameter estimates

(Std.all).
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Our Inference

Our model results imply that

behind this summary of mean is a network of effects like this.
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So, behind the standard anova result (on the left), lies a network of
relationships going on.

Note that there is an exercise tutorial in which you may work through
the mechanics of this analysis is you like. Consult

"SEM_5 Ex1 Test of Mediation_Exercise.pdf" and the associated
code and data.
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Lessons about using SEM with experimental data

1. Test of mediation is neglected concept in biometrics.

2. Careful with classic ANCOVA; if we used mediating variables as
covariates, results would indicate no significant treatment effect!

3. SEM easy to implement with simple experimental designs. With
blocking, nested designs, etc., more work required for SEM
analyses.

4. Recommend performing classic analyses along with SEM analyses
and reporting both. Classical analyses can more easily detect
interactions and in SEM you have to work to examine them (more
on that later).
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Just a few summary points.
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