&

2USGS

science for a changing world

Additional Lavaan Options

Jim Grace

U.S. Department of the Interior
U.S. Geological Survey 1

In this module I provide a few illustrations of options within lavaan for
handling various situations.

An appropriate citation for this material is

Yves Rosseel (2012). lavaan: An R Package for Structural Equation
Modeling. Journal of Statistical Software, 48(2), 1-36. URL
http://www.jstatsoft.org/v48/i02/

Notes: IP-056512; Support provided by the USGS Climate & Land
Use R&D and Ecosystems Programs. | would like to acknowledge
formal review of this material by Jesse Miller and Phil Hahn,
University of Wisconsin. Many helpful informal comments have
contributed to the final version of this presentation. The use of trade
names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.

Last revised 17.02.15.

Source: https://www.usgs.gov/centers/wetland-and-aquatic-research-
center/science/quantitative-analysis-using-structural-equation

A variety of special modeling issues are automated in lavaan.

QOutline:

* Missing data

* Robust estimators for non-normal endogenous variables
* Bootstrapping

* Categorical responses

* Input data as a covariance matrix

* Simulating data

Additional capabilities of lavaan are presented in modules on
other specific topics (e.g., Multi-Group Modeling and
Adjusting for Nested Data).

& USGS 2

This module illustrates automated procedures in lavaan that relate to
some common modeling challenges.

Missing Data

&2 USGS 3

Important issue — dealing with missing data. Traditionally "listwise
deletion™ is used when packages and functions encounter an empty data
cell. This discards lots of information (all non-missing information in
the rows deleted). Not only is this wasteful, it is also not proper
because there may be particular conditions where missing cells are
more likely. lavaan has simply automated procedures that use all the
data even when some cells are missing.

1. Lavaan options for working with missing data.

Two degrees of assumptions about the pattern of missingness:

(a) MCAR — missing completely at random

(b) MAR — missing at random (pattern of missingness not correlated
with model predictors.)

Lavaan default is listwise deletion if you do not using "missing=".

You can invoke FIML (full-information maximum likelihood) in
lavaan by declaring ‘missing = FIML’ in the fitting command.

specific model
modl <- 'cover ~ firesev
firesev ~ age'

Fit model
modl.fit <- sem(modl, data=k.dat, missing="FIML")

So-called "full-information maximum likelihood" is a very powerful
option for performing analyses in the presence of missing data. It can
be justified in two different situations, MCAR and MAR.

A useful source of information is

http://williammurrah.com/fiml-for-missing-data-in-lavaan-part-1-
descriptive-statistics-and-correlations/

and

http://williammurrah.com/fiml-for-missing-data-in-lavaan-part-2-
regression-analysis/

Results from missing="FIML".

> summary (modl.fit, rsqg=T)
lavaan (0.5-20) converged normally after 22 iterations

Number of observations 90
Number of missing patterns 4
Estimator ML
Minimum Function Test Statistic 3.018
Degrees of freedom 1
P-value (Chi-square) 0.082

Parameter Estimates:

Information Observed
Standard Errors Standard
- -
2 USGS 5

lavaan FIML methods first examine the patterns of missingness in the
data. There is actually minimal reporting for the method (just the
"Number of missing patterns” shown here).

Results from missing="FIML" (continued).

Regressions:
Estimate
cover ~
firesev -0.090
firesev ~
age 0.057
Intercepts:
Estimate
cover 1.095
firesev 3.061
Variances:
Estimate
cover 0.080
firesev 2.167
R-Square:
Estimate
cover 0.212
firesev 0.194

Std.Err

0.018

0.012

Std.Err

0.089
0.358

Std.Err
0.012
0.332

Z-value

-4.855

4.568

Z-value
12.339
8.557

Z-value
6.553
6.535

P(>lz])
0.000
0.000

P(>lz])

0.000
0.000

P(>|z])
0.000
0.000

<USGS

Estimates are shown as usual.

Robust Estimators

ZUSGS v

Methods have been developed to provide estimates that are robust to
deviations from the assumption of normal errors. Here we see what
lavaan has to offer in that area.

1. Lavaan permits use of “robust” estimation.

Lavaan has two main options for robust estimation:

MLM - produces chi-squares and standard errors robust to
non-normality. AKA the Satorra-Bentler correction.

MLR - similar to MLM, but uses the Yuan-Bentler method so
that missing data can be accommodated.

see discussion in:
Yuan & Bentler. 2000. In Sobel & Becker (eds.) Sociological
Methodology (pp 165-200)

Robust means the inferences are robust to deviations from normality in
the response variables. A useful and brief overview can be found at

http://web.pdx.edu/~newsomj/semclass/ho_estimate.pdf

2. Robust estimation invoked with ‘estimator =" command.

create model
mod <- 'y2 ~ yl
yl ~ x1'

estimate model
mod.fit <- sem(mod, data=dat, fixed.x=F,
estimator="mlm")

get results
summary (mod. fit)

“fixed.x=F" is required when using “mlm” option.

Declaring the estimator when fitting a lavaan model is simple.

3. Results

Estimator ML Robust
Chi-square 4.213 4.082
Degrees of freedom 1 1
P-value 0.040 0.043
Scaling correction factor
for the Yuan-Bentler correction 1.032

Standard Errors Robust.mlm

Estimate Std.err Z-value P(>|z])
Regressions:
ya =
yl -0.154 0.024 -6.386 0.000
yl ~
x1 1.185 0.290 4.091 0.000

& USGS 10

The results output shows the adjusted values.

10

Bootstrapping

&2 USGS g

A commonly used approach to estimating probabilities is resampling
and one particularly popular form of resampling is bootstrapping
(sampling with replacement).

11

1. Lavaan has resampling methods for non-normal data.

fit model and request bootstrapped results

mod.fit <- sem(mod, dat=dat,
test="boot", se="boot", bootstrap=200)

Bootstrapping is likewise a simple operation in lavaan.

12

2USGS

2. Results

Estimator ML
Chi-square 4.213
Degrees of freedom 1
P-value 0.040
P-value (Bollen-Stine) 0.053

Estimate Std.err 2Z-value P(>|z])
Regressions with Robust.mlm standard errors:

y2.1ln ~

yl.1ln -0.154 0.024 -6.386 0.000
yl.ln ~

x1.1ln 1.185 0.290 4.091 0.000

Regressions with bootstrapped standard errors:

y2.1ln ~

yl.1ln -0.154 0.027 =5.1150 0.000
yl-oln =

1l 1.185 0.423 2.800 0.005

We can expect bootstrapped results to give both different standard
errors and p-values because it is not just and adjustment of the standard
errors.

Categorical Responses

&2 USGS 14

Another common issue is when one has response variables that are
ordered categorical. In this situation, errors are generally non-normal.

14

The problem of analyzing categorical responses

S lew W SR B S SR SN W % Continuous pFEdiCtOI”
(flood-level) and binary
. response

(mass class = 0/1)

08

mass_class
086

04

Fitting a straight line through such a set of points represents the points
quite poorly and leads to illogical extrapolations, like intercepts > 1 or
< 0. It also violates assumptions about normality of residuals. What we
need is a way to interpret binary outcomes that makes sense. Often this
is accomplished by assuming that behind the binary outcomes lies a
continuous probability of observing a 1 or 0 response, as shown on the
next slide.

15

A model for binary responses

probit and logit models are
common response models.

10

08

1 Probit model:

link predictor to responses
using cumulative normal
probability function.

mass_class
06
1

04

1

Logit model:

link predictor to responses
using log transformation of
ratio of probabilities of
outcomes.

02

00

0.0 01 02 03 04 05 06

flood_level

& USGS 16

Two of the most common ways of representing the probability of
observing a 1 or 0 outcome are the probit and logit models.

For the probit model, we link our predictor to our responses using a
cumulative normal probability function. With the logit model, we link
our predictor to our responses using an inverse log transformation of
the ratio of probabilities of outcomes.

16

Coding lavaan for categorical responses.

load data file
binary.dat <- read.csv("Pearl BinaryResponse.csv")

create variables (use “ordered” statement)
masscat <- ordered(binary.dat$massClass)
flood <- binary.dat$floodLevel

mod.dat <- data.frame(flood, masscat)

Net effect model
catmod.l <- 'masscat ~ flood'

catmod.l.fit <- sem(catmod.l, data=mod.dat,
ordered="masscat")

summary (catmod.1l.fit, rsq=T, standardized=T)

< USGS

Two requirements
(1) Declare categorical variable to be “ordered” object in R.

(2) Declare variables that are ordered categorical in the “sem”
statement.

17

Results

Number of observations
Estimator

Minimum Function Test Statistic
Degrees of freedom

P-value (Chi-square)

Scaling correction factor

Parameter estimates:
Standard Errors
Estimate Std.err
Regressions:
masscat ~
flood -3.855 0.839

Thresholds:
masscat|tl -1.404 0.330

R-square:
masscat 0.197

190
DWLS Robust
0.000 0.000
0 0
0.000 0.000

NA

Robust.sem
Z-value P(>|z|) Std.all

-4.595 0.000 -0.444

-4.262 0.000

Regression weight of -3.885 specifies the effect of one unit change in
flood-level on the probability of observing mass_class = 1.

Error variance = 1.0 because it is set to that value to identify the model.

Rosseel gives a little more information about lavaan syntax here

http://lavaan.ugent.be/tutorial/cat.html.

He also gives more technical background at

http://www.personality-

project.org/r/tutorials/summerschool.14/rosseel_sem_cat.pdf

18

Inputing data in the form of a
covariance matrix

2 USGS v

It is possible to input the covariance matrix as the data for analysis in
lavaan.

19

Syntax for the simulateData function in lavaan can be found at
www.inside-r.org/packages/cran/lavaan/docs/simulateData

Create covariance matrix for input
lower <- '

1.0141

0.7177 1.5246

0.3749 0.7686 1.378

dat.cov <- getCov(lower, names = c("x1", "yl", "y2"))

Analysis
mod <- 'yl ~ x1
y2 ~ yl
fit <- sem(mod, sample.cov = dat.cov,
sample.nobs = 10000)
summary (fit)

(&

ZUSGS 20

The "getCov" function is used to tell lavaan a covariance matrix is
being used as input. Here only the lower matrix values are inputted,
which implies the matrix is symmetrical.

You have to tell lavaan the sample size for estimation to take place.

20

Results:

lavaan (0.5-15) converged normally after 13 iterations

Number of observations 10000
Minimum Function Test Statistic 2.556

Degrees of freedom 1

P-value (Chi-square) 0.110

Parameter estimates:
Estimate Std.err Z-value P(>|z])

Regressions:
yl ~
x1 0.708 0.010 70.683 0.000
y2 ~
yl 0.504 0.008 62.545 0.000
=ZUSGS Simulation input parameters recovered. 21

A full set of results can be obtained from the covariance matrix alone.

21

Using the lavaan
"simulateData" function

In this module I illustrate a particular lavaan option.
An appropriate citation for this material is

Yves Rosseel (2012). lavaan: An R Package for Structural Equation
Modeling. Journal of Statistical Software, 48(2), 1-36. URL
http://www.jstatsoft.org/v48/i02/

Notes: IP-000000; Support provided by the USGS Climate & Land
Use R&D and Ecosystems Programs. | would like to acknowledge
formal review of this material by XXXXX and XXXXX. The use of
trade, firm, or product names is for descriptive purposes only and does

not imply endorsement by the U.S. Government. Last revised 16.02.15.

Questions about this material can be sent to sem@usgs.gov.

22

Syntax for the simulateData function in lavaan can be found at
www.inside-r.org/packages/cran/lavaan/docs/simulateData

library(lavaan)
Here is a simple example to get us started:

sim.mod <- 'y2 ~ 0.5*yl
yl ~ 0.7*x1

generate data
set.seed (1)
sim.datl <- simulateData(sim.mod, sample.nobs=10000L)

To simulate data in lavaan, you have to provide the values for the
population parameters (in red). You also have to set a seed (if you want
results each time to be the same).

A "simulateData" function is evoked, along with a statement about the
number of samples requested. All the examples I have found use the
capital letter "L" at the end of the number of samples, but I have not
found an explanation.

This produces a new data frame "sim.dat1".

23

Continued:

fit model
test.mod <- 'y2 ~ yl
yl ~ x1
fit <- sem(test.mod, data=sim.datl)
summary (fit)

We can test to see what values we recover from our simulated data.

24

Results:

lavaan (0.5-15) converged normally after 11 iterations

Number of observations 10000
Minimum Function Test Statistic 2.551
Degrees of freedom 1
P-value (Chi-square) 0.110

Parameter estimates:
Estimate Std.err Z-value P(>|z]|)

Regressions:
y2 ~
yl 0.504 0.008 62.529 0.000
yl ~
x1 0.708 0.010 70.683 0.000
Simulation input parameters recovered. 25

At this large sample size, we recover the estimated parameters.

25

