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This module illustrates the inclusion of interaction terms in models and
the summarization of their effects using composites. The approach used
here can be contrasted with the handling of interactions using the
multigroup approach.

A general citation for this material is

Grace, J.B. and Bollen, KA. 2008. Representing general theoretical
concepts in structural equation models: the role of composite
variables. Environmental and Ecological Statistics 15:191-213.

(http://www.odum.unc.edu/content/pdf/Bollen%20Grace%20Bollen%2
0(preprint%202008)%20Environ%20and%20Ecol%20Stats.pdf)

Notes: IP-056512; Support provided by the USGS Climate & Land
Use R&D and Ecosystems Programs. | would like to acknowledge
formal review of this material by Jesse Miller and Phil Hahn,
University of Wisconsin. Many helpful informal comments have
contributed to the final version of this presentation. The use of trade
names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.

Last revised 17.02.08.

Source: https://www.usgs.gov/centers/wetland-and-aquatic-research-
center/science/quantitative-analysis-using-structural-equation




How might we include interactive effects within a model?

By “interactive effects”, we mean non-additive relations where one
predictor affects the influence of another.

Note, in the equation below, y; is influenced by x,, x,, and the product of
x, and x,.

Y3 = Y1x1 + V2x2 +y3 (X% Xx32)
That product term (x,*x,) is representing the combined (interactive) effect.

Note, an alternative approach to interactions when predictors are
categorical is to use multigroup modeling. The approach here can be used
with continous variables.
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The mathematics of interactions is similar to that of polynomial
regression.

Note that in contrast to formal multigroup analysis, here we can deal
with interactions involving continuous or semi-continuous variables.




Interactive effects of elevated atmospheric CO, on
wetland response to increasing salinity.
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CO2 control greenhouses were used for this study in a split-plot
design. Classical ANOVA analyses were performed first. The split-plot
feature was handled in the classical analyses, but is ignored here in the
illustration.

The example used here was extracted from:

Cherry, J.A., McKee, K.L., and Grace, J.B. 2009. Elevated CO2
enhances biological contributions to elevation change in coastal
wetlands by offsetting stressors associated with sea-level rise. Journal
of Ecology 97:67-77.

This article was featured in Nature News April 9, 2009, featured in
Nature Climate Change Research Highlights May 5, 2009, and was a
USGS Science Newsroom Pick.
http://www.nature.com/climate/2009/0905/full/climate.2009.32.html




Study Design

Treatments:

* CO, (ambient = 380 ppm and elevated = 720 ppm)

* salinity (0, 5, 10, 15, and 20%eo sea salts)

» flooding (drained, intermittently flooded, and flooded)

Responses:
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Fig. 2. Conceptual construct model presenting hypothesized direct 3 ,_’/USGS

and indirect effects of treatments (shaded boxes) on biotic variables

and elevation change.

We had an a priori meta-model for this analysis. It was actually a little
more involved than this, and was simplified as the soil chemistry data
was uninformative.

The biology in this case is that the plant builds soil with their organic
material, allowing natural marshes to keep pace with rising sea-levels.

C3 species was Schoenoplectus americanus.
C4 species was Spartina patens.

In this example, we omit the flooding effect and simplify the salinity
variable to 3 levels (0, 1, and 2 for low, medium, and high).

Note also that the data were adjusted slightly so the simplified analysis
results are consistent with those from the full dataset.




Classical analyses and inspections revealed an interactive effect
of CO, on plant response to salinity.

Ambient CO2 Elevated CO2

~ - T —

0 1 2 0 1 2
Salinity Category

- Ability of C3 plant to tolerate high salinities enhanced
&ZUSGS by CO,. No effect of CO, at low salinity.

It is critical that you identify the nature of the interactive effect (usually
through visualizations) in order to support the interpretation. This
figure shows how production drops off faster at higher salinities in
ambient CO2. So, we answer the original question, “Does elevated
CO2 enhance production of the C3 species?” with “Only at high
salinities, where it appears to increase salinity tolerance.




How do we model this interactive effect?

[ d - = Cherry_etal Modeling_int.. /== il 1
The data (note data provided CT— %
. . . A ) 1
in notes of this slide). TR
2 3 2 0 541.0658 0
3 5 2 0 940.9091 0
Note we use “dummy g 22 om0
variable” coding for CO,, T -
CO, =(0,1), S| 3 2 ousws o
- 10 45 2 0 3949843 0
11 51 1 0 710.0313 0
12 56 1 0 543.7304 0
while salinity is ordered R B ol B
categorical (0, 1, 2) B
17 26 1 0 2119.122 ]
18 27 1 0 278.5266 0
19 30 1 0 434.6395 o
- - il}] j: & 0 633.5423 g
Interaction variable, CxS, - —
is the simple product of CO, e 3L Qom0
and salinity level. T -
28 1 2 0 2412.382 o
29 18 1 0 831.8182 o ‘1
30 25 1 0 233.7618 1]
<> ¥ Cherry_etal_Modeling_1{] 4| i M
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Raw data. Semi-colons are end of line markers.
pot,CO2,Salinity,C3prod,CxS;

3,2,0,541.0658307,0; 5,2,0,940.9090909,0; 12,2,0,793.5736677,0;
23,1,0,597.6489028,0; 24,1,0,1933.54232,0; 29,1,0,343.5736677,0;
36,2,0,1308.62069,0; 37,2,0,1453.448276,0; 45,2,0,394.984326,0;
51,1,0,710.031348,0; 56,1,0,543.7304075,0; 57,1,0,1341.53605,0;
2,2,0,316.4576803,0; 10,2,0,882.2884013,0; 13,2,0,2285.736677,0;
26,1,0,2119.122257,0; 27,1,0,278.5266458,0; 30,1,0,434.6394984,0;
34,2,0,633.5423197,0; 42,2,0,1760.031348,0; 43,2,0,592.9467085,0;
54,1,0,870.0626959,0; 58,1,0,263.6363636,0; 60,1,0,1991.53605,0;
6,2,0,375.3918495,0; 7,2,0,328.2131661,0; 11,2,0,2412.382445,0;
18,1,0,831.8181818,0; 25,1,0,233.7617555,0; 28,1,0,1876.018809,0;
33,2,0,2201.724138,0; 35,2,0,125.0783699,0; 44,2,0,249.6865204,0;
48,1,0,1785.109718,0; 9,1,0,565.5172414,0; 52,1,1,398.1191223,1;
1,2,1,644.0438871,2; 8,2,1,1844.043887,2; 15,2,1,221.3166144,2;
16,1,1,1147.805643,1; 20,1,1,187.6175549,1; 22,1,1,290.1253918,1;
32,2,1,690.9090909,2; 39,2,1,1090.438871,2; 40,2,1,206.2695925,2;
46,1,1,432.6018809,1; 50,1,1,141.3793103,1; 59,1,1,1008.777429,1;
4,2,2,589.8119122,4; 9,2,2,271.4733542,4; 14,2,2,212.539185,4;
17,1,2,110.5015674,2; 19,1,2,43.26018809,2; 21,1,2,192.3197492,2;
31,2,2,499.2163009,4; 38,2,2,190.2821317,4; 41,2,2,916.4576803,4;
47,1,2,99.05956113,2; 53,1,2,196.5517241,2; 55,1,2,100,2




Modeling the interaction: Step 1.

Co, C;
rod
CxS P
Salinity

# specify model
mod.l <- '‘1n.C3prod ~ CO2 + Salinity + CxS'

# fit model
mod.l.fit <- sem(mod.l, data=dat2)

# request output
summary (mod.1.fit, rsqg=T)
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As is typical in nonlinear modeling where a composite will be used, we
first run the model without the composite.

Note that we log transformed the responses in this example, which
normalized errors.




Results - Step 1.

lavaan (0.5-15) converged normally after 1 iterations

Number of observations 60
Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0
P-value (Chi-square) 1.000

Estimate Std.err Z-value P(>|z])

Regressions:
1ln.C3prod ~
co2 -0.084 0.242 -0.345 0.730
Salinity -1.529 0.381 -4.016 0.000
CxS 0.612 0.240 2.547 0.011
R-Square:
1n.C3prod 0.367
&ZUSGS s

Results for the non-composited model show significant effect of
salinity and the interaction. We retain all three factors in the model for
generality.




Modeling the interaction: Step 2.

Co, Comp C;
prod
CxS
Salinity

# specify model
mod.2 <- 'Comp <~ CO2 + 1l*Salinity + CxS
1n.C3prod ~ Comp'

# fit model
mod.2.fit <- sem(mod.2, data=dat2)

# request output
summary (mod.2.fit, standardized=T, rsg=T)
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If you are not familiar with composites, you should check out the
module “Composites and Formative Indicators” first.

Recall, lavaan has a special operator for composites “<~”.
We could also create the composite scores by hand and then model.

In this case, the model had trouble converging when “1*” was applied
to CO2, but was fine when specified as above (with “1*” times
salinity).




Results - Step 2.

Estimate Std.err Z-value P(>|z]|) Std.all
Composites:
Comp <~
Cco2 0.055 0.151 0.363 0.717 0.074
Salinity 1.000 2.156
CxS -0.400 0.070 -5.713 0.000 -1.401
Regressions:
1n.C3prod ~
Comp -1.529 0.381 -4.016 0.000 -0.606
R-Square:
1n.C3prod 0.367
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Results for the composite model do not produce interpretable raw
coefficients (Estimates). The combined effect of the predictors is the
std.all value for the regression (0.606). | would not put too much stock
in the sign of that value, as shown in the next slide.
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Modeling the interaction: Step 2 — alternative approach.

## Model 3 - create composite by hand
# get parameters from uncomposited model
sumnmary (mod.1.fit)

# compute composite scores
comp.hand <- 6.762 -0.084*C02 -1.529*Salinity
+0.612*CxS

# add variable to data set
dat2$Comp.hand <- comp.hand

# specify model
mod.3 <- 'ln.C3prod ~ Comp.hand'

# fit model
mod.3.fit <- sem(mod.3, data=dat2)
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Note, the intercept that shows up when we compute the composite
comes from a more complete print out of results than is shown on slide
8. You can request meanstructure=TRUE in lavaan to get the intercepts
to print.

11




Results - Step 2.

Regressions:
Estimate Std.Err Z-value P(>|z|) Std.all
1n.C3prod ~
Comp . hand 1.000 0.169 5.902 0.000 0.606
Variances:
Estimate Std.Err Z-value P(>|z|) Std.all
1n.C3prod 0.552 0.101 5.477 0.000 0.633
R-Square:
Estimate
1n.C3prod 0.367
-
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Results for the composite model do not produce interpretable raw
coefficients (Estimates). The combined effect of the predictors is the
std.all value for the regression (0.606). | would not put too much stock
in the sign of that value, as shown in the next slide.
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Here is how we chose to represent the interaction graphically.

CO, C,
prod

61(+-)

Salinity

Here we point the arrow from CO, to the effect of salinity to
support the interpretation that CO, is modifying salinity effect.

Here is an alternative representation.

Co,
C3

61(+/-) |_prod

Salinity

= JSGS If we just wantec‘l to say there was an interaction, we
might present this way.

Rather than show the composite variable explicitly in this example, we
chose to show in a simpler form.

Note we generally do not show the parameters for paths that make up
the composite, only its net effect, and always in standardized form.
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