USGS

science for a changing world

&

Modeling Changes over Time:
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(aka Growth Models)
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When we have lots of measurements over time, we may wish to
generalize things and study trajectories. Now, instead of time steps, we
are studying trends and the factors that influence them.
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Post-fire dynamics recovery (Grace et al. 2012).

time

Grace, J.B., Keeley, J., Johnson, D., and Bollen, K.A. 2012.
Structural equation modeling and the analysis of long-
term monitoring data. pp 325-358. In: Gitzen, R.A.,
Millspaugh, J.J., Cooper, A.B., and Licht, D.S. Design
and Analysis of Long-Term Ecological Monitoring R
Studies. Cambridge University Press. i

The study used in this illustration examines the dynamics of post-fire
recovery in California shrublands. The hypothesis being examined is
that fire rejuvenates diversity of plants in the ecosystem and that
following fire, there is a general decline in diversity until the next fire.
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Figure 5. Observed values of herb species richness for the 88 plots in the dataset being examined.

Diversity dynamics did show sort of a general decline, but with loads
of plot-to-plot variation in quantity and pattern. Also, the second and
fifth years showed strong upturns, raising questions as to whether there
really is a trend as expected.
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Figure 2. Two examples of autoregressive models. (A) A simple autoregressive chain and (B) an
autoregressive cross-lagged model involving a response y and a covariate w.

Temporal data are often analyzed as either an autoregressive change or
a cross-lag autoregressive model.
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Figure 3. Simple latent trajectory model (LTM). In this model the trajectory described by observed

measurements of response variable y over 5 time periods can be explained by an intercept « and slope §.
For the linear model, the values for 4,—A;=0, 1, 2, 3, and 4.

The SEM covariance approach to the problem of temporal dynamics
often relies on using latent variables to represent latent slopes and
intercepts. There is a need to set intercepts to 1.0 and random slopes
are used to set a progression of time steps.




General References:

Bollen, K. A. and P. J. Curran. 2006. Latent curve models: a
structural equation perspective. John Wiley & Sons, NY

Duncan, T. E., S. C. Duncan, and L. A. Strycker. 2006. An
introduction to latent variable growth curve modeling.
2nd Edition. Lawrence Erlbaum Associates Publishers,
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There are now several major references for this model type.
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lavaan

latent variable analysis About lavaan Tutorial Resources Version History
Tutorial Another important type of latent variable models are latent growth curve models. Growth
) modeling is often used to analyze longitudinal or developmental data. In this type of data, an
Overview : p
outcome measure is measured on several occasions, and we want to study the change over
Before you start time. In many cases, the trajectory over time can be modeled as a simple linear or quadratic
Installation curve. Random effects are used to capture individual differences. The random effects are

conveniently represented by (continuous) latent variables, often called growth factors. In the
example below, we use an artifical dataset called Demo.growth where a score (say, a

A CFA example standardized score on a reading ability scale) is measured on 4 time points. To fit a linear growth
A SEM example model for these four time points, we need to specify a model with two latent variables: a random
intercept, and a random slope:

Model syntax 1

Model syntax 2

Meanstructures # linear growth model with 4 timepoints

Multiple groups # intercept and slope with fixed coefficients
=~ 1%t1 + 1%t2 + 1*t3 + 1*t4
=~ 0*t1 + 1%t2 + 2*t3 + 3*t4

[y

Growth curves

©n

Categorical data

lavaan implements a special function for such models called "growth".
He has a tutorial on his training page.
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input

Estimators and

more

model <- ' i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
Mediation S =~ O%t1 + 1%t2 + 2°t3 + 3*t4
Modification indices fit <- growth(model, data=Demo.growth)
Extracting summary (fit)
information

lavaan (@.5-13) converged normally after
Number of observations
Estimator
Minimum Function Test Statistic
Degrees of freedom
P-value (Chi-square)

Parameter estimates:

Information
standard Errors

GIOWET USRS, T I S TS, TS

lavaan package provides a special growth() function:

44 iterations

400

ML
8.069

09.152

Expected
standard

Screenshot from Rosseel's tutorial.
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Figure 6. Some characteristics of the data being modeled. (A) Mean richness over time, (B) histogram of
individual slopes for the 88 trajectories, (C) mean annual precipitation values, and (D) plot of mean
richness corrected for mean annual precipitation.

Now, back to our ecological example. Here are some summary
statistics.




Hypothesized Latent Trajectory Model for Richness over Time

random slopes
& intercepts

time-invarying effects

This is our model after adjusting for precipitation variation.

This is a preview of the model we will develop in the subsequent
pages. Note there is a good bit of machinery associated with this
model type.
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Simple linear trajectory

### Model 101: simple
mod.101 <- '

# intercept and slope
i =~ 1*rl +1*r2 +1*r3
s =~ 0*rl +1*r2 +2*r3
£fit.101 <- growth (mod.

latent curve

with fixed coefficients
+1*rd4d +1*r5

+3*rd4d +4*r5"

101, data=dat2)

We start with the simplest model we can develop for the five time
steps. Here the model represents the hypothesis that there is a trend
over time. Note that random intercepts apply to each of the time steps
(set to 1 in the command statement). A linear slope of change over

time is set with the progression of

0,1, 2,3, and 4.

11




Simple linear trajectory model fit

> print(£it.101)
lavaan (0.5-20) converged normally after 100
iterations

Number of observations

Estimator

Minimum Function Test Statistic
Degrees of freedom

P-value (Chi-square)

88

ML
50.303
10
0.000

Model fit statistics show the model does converge, but has poor fit to

the data.
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Simple linear trajectory results structure

Latent Variables:

i =~
rl
r2
r3
r4
r5

s =~
rl
r2
r3
r4
r5

Covariances:

i ~e

Estimate

.000
.000
.000
.000
.000

e

.000
.000
.000
.000
.000

= Ww Nk o

Estimate

-9.684

Std.Err

Std.Err

5.291

Z-value

Z-value

-1.830

P(>|zl)

P(>|z]|)

0.067

13

This slide and the next show results.
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Simple linear trajectory results structure (cont.)

Intercepts:
Estimate Std.Err Z-value
rl 0.000
r2 0.000
r3 0.000
r4 0.000
r5 0.000
i 43.953 1.386 31.708
s -3.991 0.321 -12.430
Variances:
Estimate Std.Err Z-value
rl 135.838 24.450 5.556
r2 36.455 9.018 4.042
r3 63.882 11.439 5.585
rd 39.726 8.180 4.857
r5 54.884 12.420 4.419
i 126.143 26.208 4.813
s 2.443 1.594 1.533

P(>|zl)

0.
0.

000
000

P(>]z])

0.
.000
.000
.000
.000
.000
.125

(=l =lellellelle]

000

14

Additional results.
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Simple linear trajectory modification indices

> subset (modindices (£fit.101), mi > 3.8)

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
3 i =~ 1r3 11.453 0.070 0.789 0.062 0.062
4 i =~ r4 11.749 -0.064 -0.724 -0.064 -0.064
8 8 =~ ¥3 ¥1.257 =0:771 =1.206 -0.095 -0.095
9 s =~ r4 11.690 0.716 1..119 0.098 0.098
21 3 ~1 16.400 3.790 3.790 0.299 0.299
22 r4 ~1 13.248 -3.089 -3.089 0271 =027
26 rl ~~ r2 8.256 47.500 47.500 0.243 0.243
27 rxl e~ 3 5.125 -27.587 -27.587 -0.134 -0.134

Field observations suggested a carryover effects from yearl to year2
and from year2 to year 3.

This is not exactly what is suggested by the mod indices, but what
we will consider first.

15

And we can request modification indices in order to see some possible
modifications to consider. However, in this case, we follow some
initial ideas first.
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Simple linear trajectory with autoregressive effects.

### Model 102: Include autoregressive effects
mod.102 <- '

# intercept and slope with fixed coefficients
i =~ 1*rl +1*r2 +1*r3 +1*rd4d +1*rb5

s =~ 0*rl +1*r2 +2*r3 +3*rd +4*r5

# autoregressive effects

r2 ~ rl

r3 ~ r2'

fit.102 <- growth(mod.102, data=dat2)

Autoregressive effects are added to the code.
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Simple linear trajectory with autoregressive effects.

> print(£it.102)

lavaan (0.5-20) converged normally after 93

iterations
Number of observations 88
Estimator ML
Minimum Function Test Statistic 34.215
Degrees of freedom 8
P-value (Chi-square) 0.000

17

Model discrepancy dropped from 50.3 to 34.2, a clearly significant
improvement.
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Model 102: modification indices

> subset (modindices (£fit.102), mi > 3.8)

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
3 i =~ r3 5.832 0.403 4.192 0.334 0.334
4 i=~ r4 7.200 -0.053 -0.550 -0.050 -0.050
5 i=~ r5 5.476 0.066 0.684 0.057 0.057
8 s =~ r3 4.733 -2.148 -2.758 -0.220 -0.220
9 s =~ r4d 8.004 0.619 0.795 0.072 0.072
10 s =~ r5 6.254 -0.783 -1.005 -0.084 -0.084
22 x3 »~1 13.145 11.584 11.584 0.923 0.923
23 r4 ~1 9.009 -2.611 -2.611 -0.236 -0.236
24 15 ~1 5.707 2.975 2.975 0.247 0.247
27 rl ~~ r2 14.838 61.378 61.378 04325 0.325
28 r1 ~~ ¥3 '6.200 =28:577 =28.517 -0.144 -0.144
31 2 s~ x3 :5.029: =18.318 =18:.318 =0:422 -0.122

Suggesting an error correlation. Dicey in this case, but worth trying.

Mod indices suggest an error correlation.




Simple linear trajectory with autoregressive effect and error correlation.

### Model 103: Include error correlation

mod.103 <- '

# intercept and slope with fixed coefficients
i =~ 1*rl +1*r2 +1*r3 +1*r4 +1*r5

s =~ 0*rl +1*r2 +2*r3 +3*r4 +4*r5

# autoregressive effects

r3 ~ r2

r2 ~ rl

# error correlation

rl ~~ r2'

£fit.103 <- growth(mod.103, data=dat2)

Code for adding the error correlation.
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Simple linear trajectory with autoregressive effect.

> print(£it.103)
lavaan (0.5-20) converged normally after 105

iterations
Number of observations 88
Estimator ML
Minimum Function Test Statistic 22.390
Degrees of freedom 7
P-value (Chi-square) 0.002

> fitMeasures (fit.103, "gfi")
gfi
0.986

Modification indices do not suggest any reasonable additions to make.

So, we accept Model 103 for now. Model fit was not too bad and
GFI =0.986

20

Indications are there are still some imperfections in the model. Like
other latent variable models, this type is a bold prediction that seeks
generality over close fit. GFI suggests that fit is pretty good.

20




Model 3 results

Regressions:
Estimate Std.Err Z-value P(>|z])
r3 ~
r2 0.105 0.024 4.403 0.000
r2 ~
rl 0.031 0.024 1.311 0.190
Covariances:
Estimate Std.Err Z-value P(>|z])
rl ~~
r2 57.666 19.034 3.030 0.002
i e~
s 12.826 6.081 2.109 0.035
Intercepts:
Estimate Std.Err Z-value P(>|z])
rl 0.000
r2 0.000
r3 0.000
rd 0.000
r5 0.000
i 41.918 1.580 26.532 0.000 | 5
s -3.651 0.395 -9.249 0.000

Autoregressive effect from time 2 to 3 is supported, but from time 1 to
2 not supported.

21




Hypothesized Latent Trajectory Model for Richness over Time

random slopes
& intercepts

time-invarying effects

[
[

This figure again shows where we are going, at least in part.
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Building out the network of structural effects.

### Model 104: Add time-invariant covariates
#4#4 to Model 103

mod.104 <- '

# intercept and slope with fixed coefficients
i =~ 1*rl +1*r2 +1*r3 +1*rd4d +1*rb5

s =~ 0*rl +1*r2 +2*r3 +3*rd +4*r5

# autoregressive effects

r3 ~ r2

r2 ~ rl

# error correlation

rl ~~ r2

# time-invariant effects of abiotic
conditions

i ~ abio

# fire severity effects

rl ~ fire +abio

fire ~ age +abio'

[
W

The code here now specifies time invariant effects that can explain the
wide variation in intercepts (and means).
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Model 4 fit.

> £fit.104 <- growth(mod.104, data=dat2)
Warning message:

In lav_partable_check (lavpartable, categorical
categorical, warn = TRUE)

[fire]

> print(fit.104)
lavaan (0.5-20) converged normally after 97
iterations

Number of observations

Estimator

Minimum Function Test Statistic
Degrees of freedom

P-value (Chi-square)

> fitMeasures (fit.104, "gfi")
gfi
0.996

lavaan WARNING: missing intercepts are set to zero:

88

ML
45.603
21
0.001

24

Non-fatal warning.
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Model 4 results

Regressions:
Estimate Std.Err Z-value P(>|z])
r3 ~
r2 0.156 0.033 4.689 0.000
r2 ~
rl 0.135 0.046 2.918 0.004
i ~
abio 0.454 0.189 2.397 0.017
rl ~
fire -2.804 0.697 -4.021 0.000
abio 0.41e6 0.090 4.599 0.000
fire ~
age 0.073 0.013 5.809 0.000
abio 0.054 0.007 7.512 0.000
Covariances:
Estimate Std.Err Z-value P(>|z])
rl ~~
r2 13.737 13.086 1.050 0.294
Intercepts:
Estimate Std.Err Z-value P(>|z])
i 13.599 9.494 1.432 0.152
s -1.796 0.824 -2.179 0.029 | 55

Abiotic favorability effect on the intercept, as well as the other added
effects are supported.
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Tenative Model for Richness over Time
(showing the adjustment for precipitation as part of the model).

random slopes
& intercepts

time-invarying effects

(It may be logical to let the relationship between abio and fire
be a correlation instead of directed.) %

This is now the tentative model for richness. Included here, though not
shown in the code, is a varying annual precipitation effect that was
quite important.
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