CHAPTER 8

Structural equation modeling:
building and evaluating causal
models

James B. Grace, Samuel M. Scheiner,
and Donald R. Schoolmaster, Jr.

8.1 Introduction to causal hypotheses

Scientists frequently wish to study hypotheses about causal relationships, but how should
we approach this ambitious task? In this chapter we describe structural equation model-
ing (SEM), a general modeling framework for the study of causal hypotheses. Our goals
will be to (a) concisely describe the methodology, (b) illustrate its utility for investigating
ecological systems, and (c) provide guidance for its application. Throughout our presenta-
tion, we rely on a study of the effects of human activities on wetland ecosystems to make
our description of methodology more tangible. We begin by presenting the fundamental
principles of SEM, including both its distinguishing characteristics and the requirements
for modeling hypotheses about causal networks. We then illustrate SEM procedures and
offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic
modeling objectives and core techniques. Pointers to additional modeling options are also
given.

8.1.1 The need for SEM

Consider a task faced by the US National Park Service (NPS), the monitoring of natu-
ral resources. For documenting conditions, they can use conventional statistical methods
to quantify properties of the parks’ ecosystems and track changes over time. However,
the NPS is also charged with protecting and restoring natural resources. This second task
requires understanding cause-effect relationships such as ascribing changes in the condi-
tions of natural resources to particular human activities. Causal understanding is central
to the prevention of future impacts by, for example, halting certain human activities. Ac-
tive restoration through effective intervention carries with it strong causal assumptions.
These fundamental scientific aspirations—understanding how systems work, predicting
future behaviors, intervening on current circumstances—all involve causal modeling,
which is most comprehensively conducted using SEM.
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Modeling cause—effect relationships requires additional caveats beyond those involved
in the characterization of statistical associations. For the evaluation of causal hypotheses,
biologists have historically relied on experimental studies. SEM allows us to utilize ex-
perimental and observational data for evaluating causal hypotheses, adding value to the
analysis of both types of information (e.g., Grace et al. 2009). While experimental studies
provide the greatest rigor for testing individual cause—effect assumptions, in a great many
situations experiments that match the phenomena of interest are not practical. Under
these conditions, it is possible to rely on reasonable assumptions built on prior knowl-
edge to propose models that represent causal hypotheses. SEM procedures can then be
used to judge model-data consistency and rule out models whose testable implications
do not match the patterns in the data. Whether one is relying on experimental or non-
experimental data, SEM provides a comprehensive approach to studying complex causal
hypotheses.

Learning about cause—effect relationships, as central as it is to science, brings with it
some big challenges. We emphasize that confidence in causal understanding generally re-
quires a sequential process that develops and tests ideas. SEM, through both its philosophy
and procedures, is designed for such a sequential learning process.

Beyond testing causal hypotheses, we are also interested in estimating the magnitudes
of causal effects. Just because we have properly captured causal relationships qualitatively
(A does indeed affect C through B) does not guarantee arriving at unbiased and usable
estimates of the magnitudes of causal effects. Several conditions can contribute to bias,
including imperfect temporal consistency, partial confounding, and measurement error.
The consequences of such biases depend on their context. In many ecological studies,
SEM analyses are aimed at discovering the significant connections in a hypothesized net-
work. In such studies, the relative strengths of paths are the basis for scientific conclusions
about network structure. In other fields such as medicine or epidemiology, often the focus
of a causal analysis may be on a single functional relationship that will be used to estab-
lish regulatory guidelines or recommended treatments (e.g., isolating the magnitude of
causal effect of a drug on the progress of an illness). The general requirements for SEM are
the same in both situations, but the priorities for suitable data for analyses and levels of
acceptable bias may differ. Investigators should be aware of these distinctions and strive
to obtain data suitable to their study priorities.

8.1.2 An ecological example

In this chapter, we use data from Acadia National Park, located on the coast of Maine
(USA) for illustration. At Acadia, wetlands are one of the priority ecosystem types des-
ignated for protection. For these ecosystems, both resource managers and scientists
wish to know how things work, what kinds of changes (favorable or unfavorable)
they can anticipate, and what active steps might prove useful to protect or restore the
wetlands.

Acadia National Park is located on Mount Desert Island, a 24,000 ha granite bedrock
island. As a consequence of its mountainous topography, wetlands on the island are in
numerous small watersheds. The soils are shallow in the uplands while the wetlands are
often peat-forming. Additionally, they receive their water largely from acidic and low-
nutrient inputs of rain and surface runoff, making them weakly-buffered systems (Kahl
et al. 2000). For our illustrations, we use data from 37 nonforested wetlands recently
studied by Little et al. (2010) and Grace et al. (2012) who examined the effects of human
development on biological characteristics, hydrology, and water quality.
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The studies measured various types of historical human activities in each wetland catch-
ment area: (1) the intensity of human development in a watershed, (2) the degree of
hydrologic alteration, (3) human intrusion into the buffer zone around wetlands, and (4)
soil disturbance adjacent to wetlands. A human disturbance index (HDI) of the summed
component measures was used to identify biological characteristics of plant communities
that serve as bioindicators of human disturbance (figure 8.1a; Schoolmaster et al. 2012).
Altered environmental conditions were also recorded, including water conductivity (as
an indicator of nutrient loading) and hydroperiod (daily water depth). A subset of key
biological characteristics was chosen to represent components of biotic integrity (Grace
et al. 2012). We focus here on one biological property, native plant species richness, and
its relationship with human disturbance as shown in figure 8.1b. For this example, we
want to know how specific components of the human disturbance index might lower
species richness and what might be done to reduce such impacts.
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Fig. 8.1 (a) Map of Acadia National Park showing human disturbance index scores.
(b) Native richness (species per plot) against land-use intensity scores.
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Fig. 8.1 (continued)

8.1.3 A structural equation modeling perspective

In our example, information from previous studies allows us to propose a hypothesis
about how human activities and environmental alterations can lead to a loss of native spe-
cies. In figure 8.2a we first represent our ideas in the form of a causal diagram (Pearl 2009)
that ignores statistical details and focuses on hypothesized causal relationships. The pur-
pose of a causal diagram is to (a) allow explicit consideration of causal reasoning, and
(b) guide the development and interpretation of SE models. What we include in such
a diagram is a function of our knowledge and the level of detail we wish to exam-
ine. Causal diagrams, distinct from structural equation models, are not limited by the
available data.

Several causal assumptions implied in figure 8.2a are represented by directional arrows.
The causal interpretation of directed relationships is that if we were to sufficiently manip-
ulate a variable at the origin of an arrow, the variable at the head of the arrow would
respond. In quantitative modeling, a relationship such as Y = f(X) is assumed to be causal
if an induced variation in X could lead to changes in the value of Y (see also the book
Introduction). Generally, we must be able to defend a model’s causal assumptions against
the alternative that the direction of causation is the opposite of what is proposed or that
relationships between variables are due to some additional variable(s) affecting both and
producing a spurious correlation.

In this example, the assumptions expressed are: (1) Increasing land use in a water-
shed leads to more physical structures (ditches and dams) that control or alter hydrology.
(2) Physical structures that influence hydrology can lead to changes in water-level vari-
ations (flooding duration). (3) Reduced water-level fluctuations (e.g., resulting from
impoundment of wetlands) would create a plant community made up of the few highly
flood-tolerant species. Collectively, these fundamental assumptions are only partially test-
able with observational data, since actual responses to physical manipulations are required
to demonstrate causality unequivocally.
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Fig. 8.2 (a) Simple causal diagram representing the
hypothesis that there is a causal chain connecting
land use to richness reduction through hydrologic
alteration and subsequent impacts on flooding
duration. The letter U refers to other unspecified
forces. (b) Alternative diagram including additional
mechanisms/links.

There are several ways data could be inconsistent with the general hypothesis in fig-
ure 8.2a. The direct effects encoded in the model might not be detectable. Also, the
omitted linkages implied in the model might be inconsistent with the relations in the
data. It is entirely possible that land use leads to changes in flooding duration, commu-
nity flood tolerance, or native richness in ways not captured by the observed hydrologic
alterations. Such additional omitted mechanisms (e.g., figure 8.2b) would result in resid-
ual correlations among variables not connected by a direct path. As explained later, these
alternative possibilities are testable (i.e., these are “testable implications” of a model).

Generally, it is natural to think of cause-effect connections in systems as component
parts of causal networks that represent the interconnected workings of those systems. Struc-
tural equations are those that estimate causal effects and a structural equation model is a
collection of such equations used to represent a network (or portion thereof). Defined
in this way, we think of causal networks as properties of systems, causal diagrams as
general hypotheses about those networks, and structural equation models as a means of
quantifying and evaluating hypotheses about networks. SEM originated as path analysis
(Wright 1921); however, it has now evolved well beyond those original roots.

SEM represents an endeavor to learn about causal networks by posing hypotheses in the
form of structural equation models and then evaluating those models against appropriate
data. It is a process that involves both testing model structures and estimating model
parameters. Thus, it is different from statistical procedures that assume a model structure
is correct and only engage in estimating parameters. A key element of SEM is the use of
graphical models to represent the causal logic implied by the equations (e.g., figure 8.2a).
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SEM is a very general methodology that can be applied to nearly any type of natural (or
human) system. At the end of the chapter we list and provide references for a few of the
types of ecological problems that have been examined using SEM.

8.2 Background to structural equation modeling

The history of SEM and its mathematical details are beyond the limited space of this
chapter, though a brief description of the equational underpinning of SE models is given
in appendix 8.1. References to both general and specific topics related to this background
are presented in the Discussion (section 8.4). Here we focus on fundamental principles
related to the development and testing of causal modeling.

8.2.1 Causal modeling and causal hypotheses

Achieving a confident causal understanding of a system requires a series of studies that
challenge and build on each other (e.g., Grace 2006, chapter 10). Any SEM application will
have some assumptions that will not be explicitly tested in that analysis. Thus, SEM results
will support or falsify some of the proposed ideas, while implying predictions that are in
need of further testing for some of the other ideas. SEM results should not be taken as proof
of causal claims, but instead as evaluations or tests of models representing causal hypotheses.
With that qualifying statement in place, we can now ask, “What are the requirements for
a causal/structural analysis?”

Structural equations are designed to estimate causal effects. We say “designed” to con-
note the fact that when we construct a SE model, we should be thinking in terms of
cause—effect connections. More strictly, we are thinking about probabilistic dependencies
as our means of representing causal connections. Careful causal thinking can be aided by
first developing conceptual models and/or causal diagrams that focus on processes rather
than just thinking about the available variables in hand. Each directed relationship in a
causal model can be interpreted as an implied experiment. Each undirected relationship
(e.g., double-headed arrow) connecting two variables is thought to be caused by some
unmeasured entity affecting both variables. Further, in causal diagrams, the unspecified
factors (U) (figure 8.2) that contribute to residual variances can be thought of as additional
unmeasured causal agents (although they may also represent true, stochastic variation).
Ultimately, our intent is to craft models that match, in some fashion, cause-effect rela-
tions. This is a more serious enterprise than simply searching for regression predictors. By
our very intention of seeking causal relations, the onus is placed on scientists to justify
causal assumptions. A strength of SEM is its requirement that we make these assumptions
explicit.

The phrase “no causes in, no causes out” encapsulates the fact that there are certain
assumptions embedded in our models that cannot be tested with the data being used to
test the model. These untested assumptions include the directionality of causation. Such
assumptions have to be defended based on theoretical knowledge; sometimes that is easy,
sometimes it is more challenging. While links are not tested for directionality, we can
still evaluate consistency in proposed direct, and indirect effects, as well as statements of
conditional independence.

One point that is sometimes overlooked (and is commonly treated as implicit) is the as-
sumption that causes precede effects. We should, for example (figure 8.2a), recognize that
the plant diversity of today has been influenced by the flooding duration during some
prior time period. Similarly, the flooding duration this year is influenced by hydrologic
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alterations made in prior years. It is not uncommon that the data may fail to strictly meet
the precedence requirements desired for causal effect estimation. When proper temporal
precedence does not hold, we must assume temporal consistency, meaning that current
values of a predictor are correlated with values when the effect was generated. For exam-
ple, we might only have data on flooding duration for a single year and have to assume
that the variation among sites in duration was similar in past years. Such assumptions
are not always reasonable. In such cases, one needs to develop dynamic SE models using
time-course data (e.g., Larson and Grace 2004).

8.2.2 Mediators, indirect effects, and conditional independence

Arguably the most fundamental operation in SEM is the test of mediation (MacKin-
non 2008). In this test we hypothesize that the reason one system property influences
another can be explained by a third lying along the causal path. In our example (fig-
ure 8.2a), we hypothesize that one reason plant species richness is lower in areas with
greater human land use is because of a series of processes involving hydrology that
mediate/convey an effect. The ability to express causal chains and indirect effects is a
distinguishing attribute of structural equation models (appendix 8.1). When we specify
that flooding duration is influenced by land-use intensity through hydrologic alter-
ations, we are making a causal proposition representing causal hypotheses that can be
tested with observational data for model-data consistency. Tests of mediation are most
powerful when a SEM analysis leads an investigator to conduct a follow-up study or
to obtain additional measurements that permit possible mediators to be included in
models.

Model-data consistency is critical for obtaining proper parameter estimates. First and
foremost, variables not directly connected by a single or double-headed arrow in a model
are presumed to exhibit conditional independence—that is, having no significant residual
associations. Finding residual associations can suggest either an omitted direct, causal rela-
tionship or some unmeasured joint influence. Depending on model architecture, omitted
links may result in biased estimates for some parameters. In figure 8.2a we pose the hy-
pothesis that the effects of land use on flooding duration are due to hydrologic alterations.
If we find that our data indicate that land use and flooding duration are not condition-
ally independent once we know the hydrologic alterations, either the intensity of land
use influences flooding duration in ways unrelated to observable hydrologic alterations
or an unmeasured process is causing the association. If land use and flooding duration
are causally connected through two pathways (direct and indirect), both need to be in-
cluded in the model to obtain unbiased estimates of effects along the causal chain (e.g.,
figure 8.2b).

Typically, after discovering a residual relationship (e.g., a significant correlation among
residuals), we would revise our model either to include additional linkages or alter the
structure of the model so as to resolve model-data discrepancies. It is critical that model
revision be based on theoretical thinking and not simply by tinkering to improve model
fit, otherwise our modeling enterprise is just a descriptive exercise rather than a test of a
hypothesis or theory.

It can be helpful to know the minimum set of variables needed to be measured and
modeled so as to properly specify a model, especially if one is working from a causal
diagram. A general graphical-modeling solution to this problem, the d-separation criterion,
has been developed by Pearl (1988). We omit describing this somewhat intricate concept
and instead refer the reader to a more complete treatment in Pearl (2009).
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8.2.3 A key causal assumption: lack of confounding

A classic problem in causal modeling is to avoid confounding (see chapter 7). Confounding
occurs when variables in a model are jointly influenced by variables omitted from the
model. Identifying and including the omitted variables can solve this problem, as repre-
sented in figure 8.3a. Here there is some factor U’ that jointly influences both intensity of
land use and hydrologic alterations. If we are unaware of such an influence and estimate
effects using a SE model that treats the two variables as independent, then, the direction-
ality of linkages may still be causally correct, but our parameter estimate linking the two
will be biased. An extended discussion of how confounding affects causal estimates can
be found in Schoolmaster et al. (2013). Here, we consider only a single illustration.

Let us imagine a case where there is a planning process that determines which wa-
tersheds to develop and how many hydrologic alterations to install to support those
potential developments. If planners assessed the topographic suitability for both land
development and modifications of hydrology, we would need to include some meas-
ured variable to represent this decision process in our model if we are to avoid bias
in our parameters. Figure 8.3b illustrates how we resolve this problem. By including a
measured variable representing a planner’s perceived topographic favorability in our SE
model, we block the “back-door connection” between intensity of land use and hydrologic
alterations (for more on the back-door criterion see Pearl 2009).

8.2.4 Statistical specifications

There is a relationship between how models are specified and how their parameters can
be estimated. Options for statistical specification (response distributions and link forms;
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—> I._and—L{se e —p I._and—u.se
intensity intensity
U Topographic
suitability
A 4
Hydrologic / Hydrologic
> lteration ¢ — alteration
A 4
Flooding Flooding
U= guration € =¥ duration
A 4
Native species Native species
U richness g richness

Fig. 8.3 (a) Causal diagram representing the case of a confounding effect by
U’, an unmeasured factor that influences both ends of a causal chain, the
effect of intensity of land use on hydrologic alteration. (b) A structural
equation model that resolves the potential confounding by including
measurements of the factor creating the confounding in (a).
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e.g., Poisson responses with log-linear linkage) are well covered in conventional statistics
textbooks and other chapters in this volume (see chapters 5, 6, 7, 13, and 14). In this chap-
ter we provide a few examples of various response specifications, present some guidelines
for the order in which specification choices might be considered (e.g., figure 8.5), and
mention some of the criteria that may be used.

In any statistical model, including SE models, we must choose a probability distribution
for each response (endogenous) variable and the form of the equation for relating predictors
to responses. It is common to assume linear relationships with Gaussian-distributed inde-
pendent errors, but we are not restricted to this assumption and a SE model can include
any form for a particular causal relationship, including logistic, quadratic, and binary. Of
course, for any functional form one must be cognizant of the statistical assumptions in-
volved related to the data, model specifications, and estimation methods. The choices of
model specification and estimation methods will depend on both the form of the data
and the questions being asked. Each method has its array of specific assumptions and
potential hazards and limitations, a topic too vast to cover in this chapter. We urge the
reader to be cautious with any analysis, but especially when using unfamiliar procedures.

8.2.5 Estimation options: global and local approaches

There are two general approaches to parameter estimation in SEM, a single global ap-
proach that optimizes solutions across the entire model and a local-estimation approach
that separately optimizes the solutions for each endogenous variable as a function of its
predictors (figure 8.4). Much of the focus in SEM in the past few decades has been on
global estimation, where data-model relationships for the entire model are summarized
in terms of variance—covariance matrices (upper analysis route in figure 8.4). Maximum
likelihood procedures (see chapter 3) are typically used to arrive at parameter estimates by
minimizing the total deviation between observed and model-implied covariances in the
whole model. Sometimes, alternatives to maximum likelihood, such as two-stage least
squares, are used (Lei and Wu 2012).
Maximum likelihood global estimation typically relies on fitting functions such as

Fu = log| S| + tr(SS™Y) ~log IS - (p + q). (8.1)

Here, Fyy is the maximum likelihood fitting function, $ is the model-implied covari-
ance matrix, S is the observed covariance matrix, while (p + q) represents the sum of the
exogenous and endogenous variables. For a discussion of the statistical assumptions asso-
ciated with estimation methods used in SEM, refer to Kline (2012). Global analyses have
historically not used the original data, but instead only the means, variances, and co-
variances that summarize those data. This simplification allows for the estimation of a
tremendous variety of types of models, including those involving latent (unmeasured)
variables, correlated errors, and nonrecursive relations such as causal loops and feed-
backs (Joreskog 1973). (In appendix 8.2 we illustrate a simple application of this type
of analysis.)

The alternative to global estimation is local estimation, estimating parameters for sep-
arable pieces of a model (figure 8.4, lower analysis route). Modern approaches to local
estimation are implemented under a graphical modeling perspective (Grace et al. 2012).
Consider the causal diagram in figure 8.2b. In graphical models we often talk about nodes
and their links. The graph here has four nodes and five links; nodes that are directly linked
are said to be adjacent. Causal relations within the graph can be described using familial
terminology; adjacent nodes have a parent-child relationship, with parents having causal
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Fig. 8.4 Comparison of global- to local-estimation procedures. Starting with a meta-model based
on a priori ideas, an SE model is defined. SE models can be analyzed either under a global-solution
framework or through piecewise estimation of local relationships. While analytical procedures
differ, both approaches represent implementations of the SEM paradigm.

effects on children. Three of the four nodes are endogenous because they have parents
within the diagram; land-use intensity is exogenous because it does not have a parent.
The node for hydrologic alteration has one parent (land-use intensity), while the nodes
for flooding duration and native species richness both have two parents. While hydro-
logic alteration is an ancestor of native species richness, it is not a parent because there
is no direct linkage. So, for the SE model, we have four equations representing the four
parent-child relationships. These equations are of the form, y; = f(pai +paz +- - - +¢;), with
one equation for each child node in the diagram and where y; is any response variable,
pa; refers to the parent variables for each response variable, and ¢; is the residual varia-
tion. A local solution approach involves estimating the parameters for each of those four
equations separately. Once that is done, there needs to be a separate analysis (and con-
firmation) of the conditional independence assumptions before the estimates are to be
trusted.

Local estimation is a useful alternative because it permits great latitude for the inclusion
of complex specifications of responses and linkages. It is also potentially advantageous
because it avoids propagating errors from one part of a model to another, which can
happen with global-estimation methods. Further, Bayesian estimation procedures opti-
mize parameters locally in most cases, seeking optimal solutions for individual equations
rather than the overall model. Bayesian estimation of SE models is increasingly popular
(Lee 2007; Congdon 2010; Song and Lee 2012; for ecological applications see Arhonditsis
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et al. 2006; Grace et al. 2011, 2012). Here we present the local-estimation approach as
an umbrella that permits a wide variety of statistical estimation philosophies, including
Bayesian, likelihood, and frequentist methods (see chapter 1).

Despite philosophical preferences one may have for global-estimation versus local-
estimation approaches, practical considerations are of overwhelming importance when
considering the options, as we illustrate in section 8.3. Without question, the capabilities
of available software are an important consideration and both software and instructional
materials supporting SEM are continuously evolving. In the next section we provide fur-
ther guidance for the choice of estimation method and how it relates to both model
specification and modeling objectives.

8.2.6 Model evaluation, comparison, and selection

Few problems in statistics have received more attention than the issue of how models
are critiqued, evaluated, and compared. This can ultimately be viewed in the context of
a decision problem. The question is, “What variables should I leave in my model?” or,
alternatively, “Which of the possible models should I select, based on the data availa-
ble?” For models that represent causal networks, the question is a bit different. Here we
wish to know, “Are the linkages in a structural equation model consistent with the link-
ages in the causal network that generated the data?” In this situation there should be
theoretical support for any model that is considered, as we are not shopping for some
parsimonious set of predictors; instead, we are seeking models representing realistic causal
interpretations.

An important consideration in causal modeling is that it combines theoretical a priori
knowledge with the statistical analysis of data. We bring some context to this enterprise
by distinguishing between SEM applications that are model-generating versus model-
comparing versus confirmatory. These applications represent a gradient from situations
where we have relatively weak confidence in our a priori preference for a particular model
to situations where we have great confidence in our a priori model choice. The compan-
ion ingredient is our degree of confidence in the data. For example, if we have a very large
and robust sample, we must give the data strong priority over our initial theoretical ideas.
Conversely some data sets are relatively weak, and we may have greater confidence in our
views about the underlying mechanisms. The extreme example of this theory-weighted
case is in system simulation models where data are used only to estimate parameters, not
to critique model structure. Therefore, when dealing with models containing causal con-
tent, context and judgment matter in arriving at final conclusions about processes. Of
course, it is important that one clearly notes any difference between statistical results and
any final conclusions derived from other considerations. There is a parallel here to the
issue of using informed priors in Bayesian estimation. In some cases it is appropriate to
weight posterior estimates based on prior information, but we must make clear what the
new data say when we arrive at conclusions. (This theme, that one needs to use judgment
and not blindly rely on statistical procedures, is also touched upon in the introductory
chapter and chapters 2, 3, 5, and 7.)

While model performance and model support have different nuances—assessments of
explanatory power versus relative likelihoods, respectively—in this treatment we do not
emphasize this distinction. When evaluating network models, there are always both im-
plicit and explicit comparisons. Further, evaluating model predictions, explanations, or
residuals informs us about both our specification choices and also whether we have over-
specified our models. Ultimately, in causal modeling there are many different kinds of
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examinations (including comparisons to previous or subsequent analyses) that contribute
to model selection and the inferences drawn.

The classical approach to evaluating SE models using global-estimation methods is
based on the function shown in equation (8.1) (see section 8.2.5). That function goes
to zero when there is a perfect match between observed and model-implied covariances.
In contrast, when evaluating SE models using local-estimation methods, one evaluates
individual linkages. This process of testing the topology of the model, while compati-
ble with global-estimation methods, is more general, applies to any network-type model,
and is essential with local-estimation methods. The first step in local estimation is usu-
ally to determine whether there are missing connections in the model, such as testing
for conditional independence. Each unlinked pair of variables can be tested for a sig-
nificant omitted connection (Shipley 2013). Information-theoretic methods, such as the
Akaike Information Criterion, are commonly used for model comparisons, both for the
global-estimation and local-estimation cases. chapter 3 covers the theory behind AIC
methods.

8.3 Illustration of structural equation modeling

8.3.1 Overview of the modeling process

In this section we provide general, practical guidelines for SEM and illustrate core tech-
niques and their application using our ecological example. Grace et al. (2012) present an
updated set of guidelines for the SEM process (figure 8.5), which we briefly describe here.
First, be clear on the goals of your study (step 1). The specific goals and the focus of an

1. Defi is. . i i
efine the goals and focus of analysis 5 Eva.luate specification
i options for SE models.
2. Develop model at conceptual level.
—> a. Examine data for:
i - Missing data
3. Develop causal diagram. - Data hierarchical
- Measurement error
»l/ - Functional forms

4. Exposition of causal assumptions
and logical implications of causal

b. Consider the

diagram. sample size and
model
complexity.
7. Fully specify candidate SE models. <« c. Consider the

—> need for latent

. . . variables.
8. Estimation, model evaluation

and respecification.

A\ 4

6. Choose estimation
approach.

9. Discovery, quantities, and queries.

10. Report methods, findings, and interpretations.

Fig. 8.5 Steps in the modeling process (from Grace et al. 2012).
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analysis influence the data needed, model specifications, and estimation choices. Explic-
itly articulating the conceptual model (step 2), both verbally and graphically, is critical
for conveying the logic that translates concepts into variables and ideas about processes
into models made up of those variables (Grace et al. 2010). These goals can then be used
to consider what is needed for drawing particular causal inferences as well as evaluating
the testable causal propositions (steps 3 and 4).

A number of things need to be considered when developing a fully-specified model
(steps 5-7). The characteristics of the data must be evaluated, both for the purpose of at-
tending to data issues (Are there missing data? Do variables need transformation?) and
for informing decisions about the equational representations (Are data hierarchical? Are
non-linear relationships anticipated?). One must decide how complex to make the model.
Model complexity is influenced by many factors, including objectives, hypothesis com-
plexity, available measurements, number of samples, and the need for latent variables to
represent important unmeasured factors. All of these choices influence the choice of esti-
mation method, based on the criteria previously discussed comparing global versus local
approaches. See Grace et al. (2010) for more background on model building.

For the next step (step 8), the processes of model estimation and model evaluation/
comparison, it is ideal if there is a candidate set of models to compare. However, in SEM
the issue of the overall fit of the data and model is of paramount importance. An omit-
ted link is a claim of conditional independence between two unconnected variables, a
claim that can be tested against the data. It is possible that all of the initially considered
models are inconsistent with the data. In that case, you need to reconsider the theory
underpinning the models and develop a revised hypothesis about the system, which can
be subsequently evaluated. Once no missing links are indicated, the question of retaining
all included links can be addressed. This is inherently a model comparison process. Only
when a final suitable model is obtained are parameter estimates to be trusted. At that
point parameter estimates, computed quantities, and queries of interest are summarized
(step 9) and used to arrive at final interpretations (step 10).

8.3.2 Conceptual models and causal diagrams

The conceptual model for our ecological example (figure 8.6a) represents a general theo-
retical understanding of the major ways human activities impact wetland communities in
this system. The conceptual model, termed a structural equation meta-model (SEMM; Grace
and Bollen 2008; Grace et al. 2010), represents general expected dependencies among
theoretical concepts. The SEMM provides a formal bridge between general knowledge and
specific structural equation models, serving both as a guide for SE model development
and as a basis for generalizing back from SEM results to our general understanding.

In the example, our general hypothesis (figure 8.6a) is that human activities primarily
affect wetlands through changes in hydrology and water chemistry, especially elevated
nutrient levels (Grace et al. 2012). Here we focus on two biological responses, cattail
(Typha) abundance and native species richness (figure 8.6b). Cattails are invasive in
this system and known to dominate under high-nutrient conditions. Thus, high cattail
abundance is an undesirable state while high native species richness is a desirable state.

The causal diagram (figure 8.6b) is a statement of the processes operating behind
the scene. This particular model does not portray the dynamic behavior of the sys-
tem. Instead, it represents a static set of expectations appropriate to the data being
analyzed. Given that simplification, we need to carefully consider the unmeasured (U)
variables and associated processes if we are to avoid confounding (see section 8.2.3).
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Fig. 8.6 (a) Meta-model representing general a priori theoretical understanding of how human
activities most commonly affect wetland communities in cases such as this one. (b) Causal diagram
representing a family of possible hypotheses about how specific activities might affect one
particular component of integrity, native plant richness.

In this study, several environmental covariates were considered as possible confounders of
relationships (distance from the coast, watershed size); ultimately none were considered
to be sufficiently important for inclusion.

Causal diagrams can include variables that we did not measure such as hypothesized
processes for which we have no direct measures (termed latent variables). A strength of SEM
is the ability to include latent variables and evaluate their effects on observed quantities
(Grace et al. 2010). Another alternative at our disposal is to absorb the effects of some
variables in a reduced-form model. For example, we hypothesize that human activities may
influence beaver populations and that the species pool for plants may be limited to flood
tolerant species (figure 8.6b); however, we chose to not include beavers in our SE model
(figure 8.7) because we lack appropriate data. Instead, the model has a direct link from
intensity of land use to flooding duration to represent that process (thus, absorbing the
node for beavers in the causal diagram). We also omit the variable “flood tolerance of
community” even though data exist, because our sample size is small and we wish to
keep our SE model as simple as possible. As all of this illustrates, the complexity of our SE
models may be constrained for a variety of practical reasons.

8.3.3 Classic global-estimation modeling

In this section we demonstrate global-estimation approaches to model specification, es-
timation, and evaluation, including different implementations of SEM. We begin with a
popular R library (lavaan; latent variable analysis) that implements SEM using
maximum likelihood methods that seek global solutions. Further information about
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lavaan can be found in Rosseel (2012, 2014). For simplicity of presentation, we assumed
linear Gaussian relations throughout the model, the default setting of 1avaan. We know
that assuming Gaussian residuals is not appropriate for some of the variables in this
model. For example, the variables representing human activities are all ordered catego-
rical measurements. The lavaan library has an option for declaring ordered categorical
variables that permits a more appropriate specification, though we do not use it in this
demonstration for simplicity of presentation.

Once we begin the estimation process, a first task is to determine whether there are miss-
ing links that should be included for model-data consistency. When evaluating model
fit, one should be aware that perfect fit automatically occurs when a model is saturated,
i.e., there are as many parameters estimated as there are variances plus covariances. This
is usually the situation when all possible links in a model are included. For any given
model being evaluated, observed discrepancy is compared to a saturated model using a
chi-squared statistic. The model degrees of freedom is the difference between the number of
known covariances and the number of parameters estimated. The subsequent p-value rep-
resents the asymptotic probability that the data are consistent with the candidate model.
Because in SEM our “default model” is our a priori theoretical model, not a null model, we
use a logic that is the reverse from that used in null hypothesis testing. The hypothesized
model is interpreted as being consistent with the data unless the p-value is small; in the
case of a small p-value, we conclude that the data obtained are very unlikely given the
model in hand. A chi-squared test is commonly used for evaluating overall fit and when
comparing models differing by only a single link. However, when evaluating SE models
we do more than use p < 0.05 for model rejection; instead, there are a number of different
model fit assessment criteria. The literature relating to ways of assessing fit (and compar-
ing SE models) is voluminous and well beyond what we can cover in this chapter; see
Schermelleh-Engel et al. (2003) for further background. Ultimately, our goal is to detect
and remedy any omitted associations, as their absence can substantially alter parameter
estimates. In contrast, if a model includes unneeded links, their impacts on parameter
estimates is generally small.

The lavaan code and some basic fit statistics for the first phase of analysis are shown in
box 8.1, with the code presented in Part A. In this example, the very low p-value for the
chi-squared test in Part B indicates a lack of fit. This lack of fit is reflected in the large re-
sidual covariances (differences between observed and model-implied covariances) shown
in Part C. These discrepancies in turn are used to produce a set of modification indices that
suggests ways of adding links to our model that would improve the fit (part D). These
suggestions should not be used blindly, as some may make no scientific sense. The inves-
tigator must consider what plausible alternative hypotheses are worthy of consideration
before re-estimating a new hypothesis.

In our model, several possible omitted linkages are suggested by the modification indi-
ces. Developing a revised model based on this kind of information can involve a bit of
trial and error because modification indices are not perfect predictors of actual changes
in model fit. So, some of the suggested modifications will reduce model-data discrepancy,
but others will not. The reason for this paradoxical situation is that the raw material for
the modification indices is the residual covariance matrix and large residuals can be cre-
ated for a variety of indirect reasons. In our example, it appears that we should add a
link between buffer intrusion and native species richness because that implied path had
the largest modification index. However, there is no reason to think that buffer intrusion
would have a direct effect. Ultimately, one must select theoretically supportable modi-
fications and then make changes that seem most reasonable, continuing until a set of
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Box 8.1 EXAMINING OVERALL GOODNESS OF FIT AND LOOKING FOR
OMITTED LINKS IN INITIAL MODEL: R CODE AND SELECT RESULTS

# PART A: LAVAAN CODE
# creating data object for the analysis
semdat 8 <- data.frame ( landuse, buffer, hydro, flooding,
richness, soil, cond, cattails)
# specify model
mod_8a <- 'buffer ~ landuse
hydro ~ buffer + landuse
flooding ~ hydro + landuse
soil ~ buffer
cond ~ soil + buffer
cattails ~ cond
richness ~ flooding + cattails’

fit 8a <- sem ( mod 8a, # estimate model
data = semdat 8)

summary (fit 8a, rsq = T, # select results in Part B
fit.measures = TRUE)

resid ( fit_8a, # select results in Part C
type = "standardized")

modindices ( fit 8a) # select results in Part D

# PART B: INITIAL MODEL FIT RESULTS
lavaan (0.5-11) converged normally after 60 iterations

Number of observations 37
Estimator ML
Minimum Function Test Statistic 36.776
Degrees of freedom 17
P-value (Chi-square) 0.004

# PART C: STANDARDIZED RESIDUAL COVARIANCES
buffer hydro flooding soil cond cattails richness

landuse

buffer 0.000

hydro 0.000 0.000

flooding -2.037 NA NA

soil NA 0.466 -0.028 NA

cond NA 0.863 -0.066 NA NA
cattails 1.232 0.111 0.759 1.485 NA NA

richness -1.502 -1.497 -0.303 -0.934 -1.214 -0.732 0.336
landuse 0.000 0.000 NA 0.211 1.311 1.237 -2.034 0.000
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# PART D: SELECT MODIFICATION INDICES

Variable Pair Implied Path Modification Index
richness ~~ landuse richness <-> landuse 8.941
richness ~ buffer richness <- buffer 10.450
richness ~ landuse richness <- landuse 8.941
richness ~ cond richness <- cond 6.232
cond ~ landuse cond <- landuse 5.513

defensible changes is obtained. Working through this we find that including links from
land use to native richness and to conductivity (box 8.2, Part E) reduce model discrepancy
to generally acceptable levels based on the chi-squared p-value (box 8.2, Part F), and in
the process the other suggested modifications are resolved.

Model simplification, asking whether our model is parsimonious, is the next phase of
evaluation. It turns out our revised model includes some links that may not be supported
by the data (box 8.2, Part G p-values). One method for deciding whether a link actually

Box 8.2 ANALYSIS OF REVISED MODEL WITH LINKS ADDED: R CODE AND
SELECT RESULTS

# PART E: LAVAAN CODE FOR MODEL WITH LINKS ADDED (added component
in bold)
mod_8b2 <- ’'buffer ~ landuse

hydro ~ buffer + landuse

flooding ~ hydro + landuse

soil ~ buffer

cond ~ soil + buffer + landuse

cattails ~ cond

rich ~ flooding + cattails + landuse’
fit 8b2 <- sem ( mod 8b2, data = semdat_ 8) # estimate model
# select results in Parts F and G
summary ( fit 8b2, rsqg = T, fit.measures = TRUE)

# PART F: REVISED MODEL FIT
lavaan (0.5-11) converged normally after 67 iterations

Number of observations 37
Estimator ML
Minimum Function Test Statistic 18.076
Degrees of freedom 15
P-value (Chi-square) 0.259
RMSEA 0.074
90 Percent Confidence Interval 0.000 0.180
P-value RMSEA <= 0.05 0.348

(continued)
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Box 8.2 (continued)

# PART G: PARAMETER ESTIMATES

Estimate Std.err Z-value P(>|z]|)
buffer ~

landuse 1.048 0.089 11.743 0.000
hydro ~

buffer 0.427 0.396 1.078 0.281

landuse 0.966 0.468 2.065 0.039
flooding ~

hydro 29.854 11.784 2.533 0.011

landuse 15.263 22.861 0.668 0.504
soil ~

buffer 0.211 0.040 5.289 0.000
cond ~

soil 0.179 0.102 1.748 0.081

buffer 0.070 0.058 1.202 0.229

landuse 0.163 0.064 2.549 0.011
cattails ~

cond 1.038 0.145 7.139 0.000
rich ~

flooding -0.082 0.011 -7.571 0.000

cattails 4.812 3.084 1.560 0.119

landuse -6.228 1.546 -4.029 0.000

can be removed is the single-degree-of-freedom chi-squared test, which is computed for two
models that differ by only a single link/parameter. Either standard frequentist or likeli-
hood ratio tests can be used to compare models (see chapter 1). A different approach
that is preferred when comparing several alternative models is the use of information
theory measures such as the Akaike Information Criterion (AIC). (See Burnham and An-
derson (2002) and chapter 3 for more background on AIC.) Here we simply show the
results (box 8.3) that led to our pruned final model (figure 8.7b).

8.3.4 A graph-theoretic approach using local-estimation methods

A graph-theoretic approach to SEM is non-parametric in the sense that the rules of causal
modeling are compatible with any form of statistical specification (Pearl 2012; Grace
et al. 2012). There is a great relaxation of restrictive assumptions that occurs if we can
work with the original data instead of the derived covariance matrix as in the global-
estimation approach. For our SE model (figure 8.7a) there are two aspects of specification
we can now reconsider: (a) the distributions of variable responses, and (b) the form (lin-
ear or other) of relations between variables. Box 8.4 presents equations for our model that
address these issues. Figure 8.8 shows the response distributions for the variables. For hy-
pothesis testing, we are concerned about having residual variation that meets statistical
assumptions. Often investigators using a global-estimation approach will use adjustment
procedures to normalize residuals or will use resampling procedures to obtain boot-
strapped parameter estimates. Local estimation permits us to do much more, as shown
in box 8.4.
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Box 8.3 MODEL SIMPLIFICATION: EXAMPLE R CODE AND SELECT RESULTS

# PART H: PRUNED MODEL ACCEPTED AS FINAL MODEL
mod 8b3 <- ’'buffer ~ landuse

hydro ~ landuse

flooding ~ hydro

soil ~ buffer

cond ~ soil + landuse

cattails ~ cond

richness ~ flooding + landuse

cattails ~ ~ 0 * richness’
fit_8b3 <- sem ( mod 8b3, data = semdat_8)
summary ( fit 8b3, rsqg = T, fit.measures = TRUE)

# PART I: FINAL MODEL FIT
lavaan (0.5-11) converged normally after 66 iterations

Number of observations 37
Estimator ML
Minimum Function Test Statistic 23.180
Degrees of freedom 19
P-value (Chi-square) 0.230
RMSEA 0.077
90 Percent Confidence Interval 0.000 0.171
P-value RMSEA <= 0.05 0.325

PART J: PARAMETER ESTIMATES
Estimate Std.err Z-value P(>|z])

buffer ~

landuse 1.048 0.089 11.743 0.000
hydro ~

landuse 1.413 0.218 6.469 0.000
flooding ~

hydro 35.595 8.116 4.386 0.000
soil ~

buffer 0.211 0.040 5.289 0.000
cond ~

soil 0.222 0.097 2.289 0.022

landuse 0.227 0.037 6.145 0.000
cattails ~

cond 1.038 0.145 7.133 0.000
richness ~

flooding -0.080 0.011 -7.498 0.000

landuse -4.804 1.266 -3.795 0.000
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Fig. 8.8 Histograms for variables in SE model.

Box 8.4 INITIAL SPECIFICATIONS FOR LOCALLY ESTIMATED MODEL USING
GLM AND LM FUNCTIONS IN R

# Buffer as a function of land-use intensity
glm buffer <- glm ( buffer prop ~ landuse, family = binomial)

# Hydrologic alteration as a function of land-use intensity
hydro cat pred <- ifelse ( landuse == 0, 0.739, 4.21)

# Soil disturbance as function of buffer intrusion
glm soil <- glm ( soil ~ buffer, family = binomial)

# Flooding duration as function of hydrologic alteration and
land-use

# intensity.
glm flooding <- glm ( flooding prop ~ landuse + hydro, family
= binomial)

# Water conductivity as a function of soil disturbance and
land-use intensity
Im cond <- 1lm ( cond ~ soil + landuse)

# Native species richness as function of flooding duration and
cattails

glm richness <- glm ( richness ~ flooding + cattail,
family = poisson)

# Cattail cover as change-point function of water conductivity
cattails _stepl <-1m ( cattail ~ cond)
cattails <- segmented ( cattails stepl, seg.Z = ~ cond, psi = 1.9)
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One issue we address using local-estimation procedures relates to the fact that use of
approximate methods for specifying response forms runs the risk of arriving at predicted
scores that are not directly comparable to the data. For example, many of the variables
in this model are bounded on one or both ends (e.g., species richness, percentage cover
of cattails). To prevent predictions falling outside those bounds, particular distributions
need to be specified for the responses (see chapters 3 and 6, and book appendix). Con-
sider, for example, the relationships between land-use intensity and hydrologic alteration,
and between water conductivity and cattails (figure 8.9). These data clearly do not fit
linear models. When humans developed wetland areas, above some minimum value of
land-use intensity they always put in structures (e.g., ditches, dams) to control the hy-
drology, resulting in a discrete (all or none) relationship (figure 8.9a). A more appropriate
model representation is a two-level discrete response (figure 8.9¢). For the case of cattails,
they increase in abundance above some minimum threshold of water conductivity (fig-
ure 8.9b). This relationship can be specified with a change-point model (figure 8.9d) using
local solution methods (box 8.4).

(a) (b)
[ ]
1.5 +
c
2 ] o °
g g
Y °
= = 1.0 H L4
2 Qo
[@)) o
s =
o -
pet - 05 —
=S S .
T
%
00 e o o ®e o
T T T T T T f T T T T
0.0 1.0 2.0 3.0 1.4 1.8 2.2 2.6
Land-use intensity Water conductivity, log10 meq
() (d)
6 - ° o °
_ ° —
g ° ® | " .
g 4 1 P % ¢
2 2 104 .
MERT . . o 3
9 2
3 2 %o e | F
-§ 5 0.5 - . o
T 1%
019 00 e oS Bevo e o
T T T T T T T T T T T T
0.0 1.0 2.0 3.0 1.4 1.8 2.2 2.6

Land-use intensity Water conductivity, log10 meq

Fig. 8.9 (a) and (b) represent linear approximations of some key relationships, which are of the
form typically supported by global-estimation methods (e.g., 1avaan). (c) and (d) show more
complex specifications of the same relationships as in (a) and (b), illustrating what can be
included in locally estimated models.
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Other response forms used in our model include a proportional odds specification
(Agresti 2010) for the ordered categorical response of buffer intrusion (scored as one of
four levels), and the proportion data of flooding duration (proportion of days flooded
a year). For these variables, we used a logit link to represent the odds of observing
maximum versus minimum values (box 8.4). Only two levels of soil disturbance were
observed, so this was modeled as a Bernoulli outcome with a logit link (essentially a lo-
gistic regression). The degree of hydrologic alteration, although measured on a 6-point
scale, behaved as a dichotomous response and was so modeled. Native species richness
was modeled as a Poisson (count) variable while log water conductivity was treated as a
Gaussian response. For details on the local-estimation procedures for these models, the
reader should consult the appropriate R documentation. More justification of the forms
used is in Grace et al. (2012). For more information on types of models, see chapter 6 and
Bolker (2008).

Under a graph-theoretic approach for determining whether there are missing link-
ages, the key criterion is whether non-adjacent (unlinked) variables are conditionally
independent. To determine whether a link between two variables should be added, we
can use procedures that are illustrated in appendix 8.3. First, we obtained the residuals of
the current model and then examined relationships among those residuals for unlinked
variables. For variables with no predictors, the raw values were used in place of the residu-
als. Because we wished to consider all functional forms, we used both computational and
graphical approaches. In our example, we detected residual associations (figure 8.10) that
ultimately led us to a revised model (figure 8.11, box 8.5). This model is slightly different
from that based on a global approach, specifically the inclusion of a link between buffer
intrusion and native species richness, and the lack of a link between land-use intensity
and richness (compare figures 8.7 and 8.10). The differences between the models arise
from the use of linear Gaussian specifications in the global model, but more complex
forms under local estimation (appendix 8.3).

8.3.5 Making informed choices about model form and estimation method

In practice, analyses are conducted by investigators with individual backgrounds, training,
and scientific motivations. Analyses are also conducted with different software packages
that have their own implementation of methods. Thus, one size does not fit all when it
comes to SEM. There are two schools of thought as to which estimation method—global
or local—is more appropriate. Pearl (2012) suggests that local estimation is more funda-
mental because it does not propagate errors caused by misspecification in one part of a
model to other parts of a model. However, sometimes models are best seen as a single
hypothesis. Consider psychology research where highly abstract concepts are represented
exclusively using latent variables and the hypothesis is about how the latent machinery
can cause the observed data patterns. In this case we can see an investigator preferring
an estimation method that demands a simultaneous global solution. Biological problems
with similar priorities might be expected for studies of behavioral ecology, life-history ev-
olution, or organismal physiology. For example, Tonsor and Scheiner (2007) used SEM to
relate physiological traits to traits involving morphology and life history, and ultimately
to fitness. As the goal of that study was to investigate trait integration, a global-estimation
procedure was necessary.

Global-estimation methods are inherently more constrained with regard to detailed sta-
tistical specification. With local-estimation methods we can implement highly specific
and various response forms and complex non-linear linkages while avoiding propagating
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Fig. 8.10 Residual relationships between non-adjacent variables in initial model as revealed using
local evaluation methods. The code for producing these graphs and associated results is presented
in appendix 8.3.

misspecifications to the estimation of the whole model. In global estimation, declaring
one response variable to be non-Gaussian causes the method of estimation of the en-
tire model to change (e.g., from maximum likelihood to weighted least squares) and
such changes can have undesirable features. Some software packages have the capacity to
address statistical complexities within the global-estimation framework; however, these
are always some form of approximate method, so local-estimation methods are generally
more flexible in this regard.

When it comes to modeling with latent variables, global-estimation methods excel.
By summarizing data and model implications as covariances, global-estimation methods
permit estimation and evaluation of very complex latent hypotheses. To include latent
variables with local estimations, one must use Bayesian MCMC methods. This approach
permits greater flexibility (Lee 2007), but comes with a greater cost of time and expertise
for setting up models, running them, and diagnosing problems.

Global estimation also facilitates modeling other types of relationships, including feed-
backs, causal loops, and correlations among error terms. These types of relationships
can be estimated for observed variable models using local-estimation methods, but with
greater effort (appendix 8.3). Bayesian MCMC procedures do not readily permit esti-
mation of models having causal loops. Thus, the choice between global-estimation and
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Fig. 8.11 Revised model based on local estimation and
evaluation (see appendix 8.3). Paths with asterisks were added
based on the discovery of non-independence. Paths
represented by dashed lines were not supported by the data.
Epsilons signify error variables representing the influences of
unspecified factors on each endogenous variable in the model.
The model differs slightly from that arrived at using
global-estimation methods and linear relations (see figure 8.7b).

local-estimation approaches will depend on the structure of the model and its underlying
theory.

Sample size requirements are a complex topic with a large and somewhat inconsistent
literature. In general, careful consideration of the relationship between raw sample size
(which is generally equal to the number of observations in SEM studies) and model com-
plexity is very important in SEM. When power is low, one might consider reducing model
complexity by including only the most important relationships (Anderson 2008). While
general recommendations for standard sample size requirements are sometimes found in
the older literature, it is inappropriate to require some fixed number of samples because
sample adequacy depends on model complexity. Thus, the important issue is the number
of samples per parameter (d). Our general advice is that a d of 20 is plenty, a d of 5 is
on the low end, and a d of 2.5 is marginal. In our example, we had 37 samples and 9
estimated parameters in our final SE model, for a d = 4.1, a ratio of samples to parameters
far less than ideal. Often the SEM analysis is intended to provide motivation for further
studies that are stronger in numerous regards, including sample size. Because of the de-
pendence of power on both sample size and model structure, it is important to consider
the motivating theory and the possible model prior to data collection. Many things in-
fluence sample size, including the purpose of the study, the feasibility of large samples,
and the need to use previously collected data, so one must be flexible while remaining
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Box 8.5 PREDICTION EQUATIONS

# buffer response in logits

buffer hat <- -2.9723 + 2.3232 * landuse

# transform from logits to proportions and rescale to (0:3)
buffer hat pr <- (1 / (1 + 1/ ( exp ( buffer hat ) ) ) ) * 3

# hydro response: if landuse = 0, hydro = 0.739 else hydro = 4.21
hydro cat pred <- ifelse ( landuse == 0, 0.739, 4.21)

# soil response in logits

soilp _hat <- - 4.1617 + 1.6707 » buffer

# transform from logits to proportions and rescale to (0:1)
soilp hat.pr <- (1 / (1 + 1/ ( exp ( soilp hat ) ) ) )

# flooding duration response in logits
floodingp _hat <- -1.3146 + 0.4212 * hydro + 0.6845 * landuse
- 0.55 * buffer
# transform from logits to proportions and rescale to (0:1)
floodingp hat pr <- (1 / (1 + 1 / ( exp ( floodingp hat ) ) ) )
* 365

# water conductivity response, in log-transformed units
cond hat <- 1.8056 + 0.222 * soil + 0.2266 * landuse

# native species richness as poisson response; (log units)
richness_hat <- 3.998 - 0.00271 * flooding - 0.4556 * buffer3
# transform to linear units

richness hat tr <- exp ( richness hat )

# cattail abundance as segmented/change-point response to
conductivity

cattails _hat <- 0.14 + 1.4903 * ( ( cond - 2.104 ) > 0 )
* (cond - 2.104 )

skeptical about conclusions based on limited sample sizes. Not all estimation methods are
equally defensible for small samples. Maximum likelihood global estimation is based on
large sample theory and can lead to over-fitting when sample sizes are small (Bollen 1989).
Local estimation is considered by some to be more tolerant of small sample sizes when a
Bayesian MCMC approach is used (Lee and Song 2004).

8.3.6 Computing queries and making interpretations

Once final parameter estimates have been obtained for a SE model, it is time to use those
estimates for interpretive purposes. A general technique for post-estimation analysis is
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the query. In the context of SEM, a query is a computation made using the prediction
equations to yield some specific quantity or set of quantities. Such queries are extremely
valuable in summarizing effects in models with non-linear linkages. They are also very
useful for expressing the causal predictions implied by a model. Finally, queries allow us
to use our hard-earned prediction equations to consider broad ecological implications that
emanate from our scientific investigations.

There are four basic kinds of queries. Two are retrospective, looking backward in time.
One of these is the query of attribution, which asks, “What prior conditions and pro-
cesses led to the observed outcomes?” The second retrospective query is the counterfactual,
which asks, “What would have happened if?” For example, what if wetland #12 had been
exposed to a different set of conditions? There are also two prospective queries about fu-
ture conditions. The forecast or prediction is a forward-looking query that extrapolates
from current conditions and processes to future outcomes. Weather forecasts are a famil-
iar example. Interventions are another kind of prospective query which ask, “What would
happen if we changed (intervened upon) the conditions?”

When linear Gaussian models are used, information transfer through the network can
be summarized by the multiplicative and additive properties of simple path coefficients
(Wright 1921). We can calculate the strength of indirect and total effects, for example,
by multiplying the coefficients along compound pathways. Using the lavaan model re-
sults (box 8.3, part J), the total effect of land-use intensity on native species richness can
be computed as the sum of the direct (-4.804) and indirect (1.413 x 35.595 x -0.08 =
—4.024) pathways (total effect = —-8.828). When we use more complex model specifica-
tions, the computation of effects is more complex as well. In this situation, effects of
varying land-use intensity from its minimum to maximum values on native richness
through various pathways must be computed using the prediction equations given in box
8.5. Mlustrations of such computations are given in the online supporting material for
Grace et al. (2012).

One of the most common ways of expressing results is through the computation of
standardized effects. An unstandardized effect represents the responsiveness of y to x
in raw form. For the case of the total effect value of -8.828 computed above, this is a
loss of nearly 9 species per unit increase in land-use intensity category. Such values have
stand-alone interpretability and are the raw materials for our prediction equations. In con-
trast, standardized effects facilitate comparisons and can be used to talk about the relative
importance of different variables and pathways. Classical standardization takes an unstan-
dardized slope and multiplies it by the ratio of the standard deviations of x and y. Since
slopes are in units of y/x, multiplying by SD(x)/SD(y), puts the standardized coefficients
into common units (standard deviations).

While standardized coefficients are widely used and advocated for (e.g., Schielzeth
2010), others have strongly criticized their use (e.g., Greenland et al. 1999), primarily
because standard deviation estimates are strongly sample-dependent and using them in
computations introduces multiple sources of error into the resulting estimates. In response
to these criticisms, Grace and Bollen (2005) proposed an alternative method of standardi-
zation that uses the “relevant ranges” of the variables in place of their standard deviations.
This changes the interpretation of a standardized coefficient into “the predicted change
in y as a proportion of its range of expected values if we were to vary x across its range.”
Aside from providing a coefficient that has a more intuitive interpretation, this latter
method lets the investigator decide the ranges over which slopes are relevant, giving fur-
ther control to interpretation and comparison. This approach is especially relevant when
comparing populations, where standard deviations will certainly not be constant. The use
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of relevant-range standardization is particularly useful in SEM when using complex model
specifications because standard deviations are not good summary statistics for highly non-
normal variables. Illustrations of the computation of both classical and relevant-range
standardization are given in the online supplement to Grace et al. (2012).

The most basic forecast asks what would be the characteristics of a new sample from the
same population. For example, we can ask, “If we took a random sample of wetlands from
the same distribution and if cattails respond to conductivity as before, what would be the
distributions of conductivity and cattail abundances?” Our interest here is extrapolating
from a small sample. What we discover is that our simple extrapolation predicts a broader
range of conductivity than seen in our sample but the current range of values for cattails
covers the span we might expect from a much larger sample (figure 8.12).

Interventions are alterations of conditions, whether by humans or nature. An
intervention-based query of interest is, “What would happen to the distributions of
conductivity and cattail abundances if we could control influences on water conductiv-
ity?” We answer this question using a simplified model (figure 8.13). What we discover
(figure 8.14) is that even when action is taken to prevent human influences, there is still
an influence from other unspecified factors, which could be bedrock sources or effects or
other past human activities.

The most difficult question to answer from a causal analysis is “What would have hap-
pened to a particular individual in our sample if in the past it had been subjected to
different conditions?” Consider the scatter of points in figure 8.9b where wetlands have
greater or lesser cattail cover than predicted. One wetland has 100% cover even though its
conductivity is about 1.8, well below the estimated threshold. An informal examination
of the evidence suggests that this wetland would have high levels of cattails even if it had
never been influenced by human activities. Our evaluation here is informal; for formal
analysis of such counterfactuals we refer the reader to Morgan and Winship (2007).
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Fig. 8.12 Histograms for water conductivity and cattails, presenting both the observed
distributions (upper) and the distributions that would be predicted for a new sample of 200
wetlands (lower).
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Scenario 1: Scenario 2: Scenario 3:

Observed system, Partial control of W, Complete control of W,
model M model M, model M,,
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Human / Human / Human /
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Fig. 8.13 Queries about predicted effects of interventions on water conductivities and cattail
abundance. Scenario 1 is status quo; scenario 2 is the elimination of buffer intrusion and soil
disturbance; scenario 3 is a reduction of water conductivity to reference conditions. The “U”
variables refer to unspecified causes of variation. The operator “do(H = 0)" refers to reducing
the values of land use and soil disturbance on conductivity to 0. The operator “do(Uyy = 0)”
refers to reducing the value of the unspecified influences on conductivity to 0. From Grace
etal. (2012).

8.3.7 Reporting results

The guidelines in figure 8.5 (see also section 8.3.1) provide some advice for the general
features of the study that should be reported. In particular, it is important to present
the modeling rationale as explicitly and clearly as possible. Including a conceptual meta-
model in your paper can help. Often, it is desirable to show both the initial and final SE
models, unless the study was highly exploratory and presenting the initial model would
just confuse the reader. In such cases it is important to declare that this was an explor-
atory, model-building exercise. When applications are model-comparing, however, SEM
convention calls for describing each model examined and all modifications made (e.g.,
Laughlin et al. 2007).

A key aspect of any SEM analysis is to verify that the results are based on a model that is
justified based on the data. Model-fit statistics, such as those presented in box 8.2 part F,
are typically expected for cases of globally estimated models. For studies employing local
methods, the number we are looking for is zero, i.e., no missing linkages that should be in
the model. So, it is important to describe the examinations conducted and reassurances
of model-data consistency.

Regarding model parameters and quantities, often final models and results are sum-
marized graphically, though sometimes only the main findings (e.g., total effects) are
summarized in the paper when many models are examined. Graphical presentations of
final models typically include some representation of the parameters. If graphs are based
on standardized parameters, then the primary unstandardized estimates and their proper-
ties (e.g., box 8.3) should be presented in a table or at least in online supporting materials.
Readers typically find visual enhancement of SE model results, such as the inclusion of
drawings or inset images, quite helpful (e.g., Alsterberg et al. 2013). Extrapolations such as
those given in figure 8.14 have seldom been presented, but we feel this is an underutilized
opportunity.
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Fig. 8.14 (a) The observed distributions of water conductivity and cattail abundance (as cover). (b)
The predicted distributions if effects of human activities are eliminated (Model My, in figure 8.13).
(c) The predicted distributions if conductivity were completely controlled (Model My,). From Grace

etal. (2012).

8.4 Discussion

The development of ideas and techniques that are emphasized in current treatments of
SEM have been fueled by the needs of particular subject-matter disciplines primarily out-
side the natural sciences (specifically, in the human sciences). As a result of its multi-origin
evolution, SEM has accumulated a large literature, much of which is not very accessi-
ble to biologists and ecologists. We believe a next-generation implementation is needed,
both to incorporate transformative advances in methodology and to expand the practical
potential of SEM (Grace et al. 2012).

The form of the presentation in this chapter differs from most other presentations of
SEM currently available in that it is more focused on general capabilities than on tech-
nical details. This emphasis of ours is reflected in our consideration of both standard,
matrix-based (global) and new, graph-theoretic (local) implementations. In this chapter
we suggest fundamental principles for developing models and provide a formal exposition
of causal diagrams as a useful step toward that goal, as causal diagrams support and
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encourage a rigorous consideration of causal assumptions. We contrast the classical SEM
implementation using matrix techniques and global estimation with graph-theoretic
methods using graphical analysis and local estimation. We further illustrate the use of
both approaches, as each has its strengths and weaknesses. For example, global models
are more constrained in the used of complex, non-linear, and non-Gaussian specifica-
tions, while local estimation permits a greater variety of specification forms. On the other
hand, global estimation facilitates the inclusion of latent variables and non-recursive re-
lationships. Another point of emphasis in our presentation is that obtaining parameter
estimates is just the first step in exploring the implications of model results. Because of
the tremendous flexibility and potential complexity of SEM, we only present core con-
cepts and a limited illustration. In the following paragraphs, we advise the reader about
additional issues and resources.

Bollen (1989) provides a historic treatment of the subject while Hoyle (2012a) summa-
rizes recent advances. For those in the ecological and natural sciences, we recommend
Mitchell (1992), Shipley (2000), and Grace (2006). For the measurement of theoreti-
cal entities see Raykov and Marcoulides (2010) for a psychometric perspective. Practical
aspects of measurement in the social sciences are presented by DeVellis (2011) and
Viswanathan (2005). For an ecologist’s perspective, see Grace et al. (2010), especially
with regard to the use of latent variables. Pearl (2009) deals with the theoretical devel-
opment and use of causal diagrams. Practical presentations can be found in the field
of epidemiology (Greenland et al. 1999). Recent summaries of specification complexi-
ties for global-estimation or local-estimation applications can be found in Gelman and
Hill (2007), Zuur et al. (2007, 2009) , Edwards et al. (2012), and Hoyle (2012b), as well as
in various chapters in this book. The relationship of data characteristics to specification is
an important related topic (Graham and Coffman 2012; Malone and Lubansky 2012). For
model evaluation and selection, West et al. (2012) have summarized choices under global
estimation, while Shipley (2013) further illustrates the use of graph-theoretic methods
for local estimation. The topic of interpreting the final model is one where a few tech-
nical aspects have received general treatment, though much of interpretation becomes
discipline-specific. Grace and Bollen (2005) provide a general summary of coefficient types
and their interpretations. More modern topics, such as queries and counterfactuals, are
covered by Morgan and Winship (2007) and Pearl (2009).

There has been a notable expansion in the number and variety of applications of SEM
in the natural sciences in recent years. SEM studies of trophic interactions (e.g., Lau
et al. 2008; Riginos and Grace 2008; Laliberte and Tylianakis 2010; Beguin et al. 2011;
Prugh and Brashares 2012), plant communities (e.g., Weiher 2003; Seabloom et al. 2006;
Laughlin 2011; Reich et al. 2012), microbial communities (e.g., Bowker et al. 2010), an-
imal populations (e.g., Janssen et al. 2011; Gimenez et al. 2012), animal communities,
(e.g., Anderson et al. 2011; Belovsky et al. 2011; Forister et al. 2011), ecosystem pro-
cesses (e.g., Keeley et al. 2008; Jonsson and Wardle 2010; Riseng et al. 2010), evolutionary
processes (e.g., Scheiner et al. 2000; Vile et al. 2006), and macroecological relations (Car-
nicer et al. 2008) have been conducted. While SEM has been most commonly applied
in observational studies, there have been numerous applications involving experimen-
tal manipulations (e.g., Gough and Grace 1999; Tonsor and Scheiner 2007; Lamb and
Cahill 2008; Youngblood et al. 2009). To date, relatively few studies have applied Bayesian
methods to ecological applications of SEM (e.g., Arhonditsis et al. 2006; Grace et al. 2011;
Gimenez et al. 2012).

Finally, we reiterate that a confident, causal understanding requires pursuit via a series
of studies that pose, test, and revise hypotheses. SEM, through both its philosophy and
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procedures, is designed to be used in that way. When you can turn your scientific un-
derstanding into a network hypothesis and evaluate it against data, a learning process
is triggered that can change not only the way data are analyzed, but also how studies
are designed and conducted. It is our experience that SEM can contribute significantly to
this process, thus advancing our understanding of ecological systems. This chapter omits
discussion of many possibilities and technical issues. We refer readers to our educational
website http://www.nwrc.usgs.gov/SEM.html for more information.
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