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This module considers the interpretation of path coefficients when 

modeling with categorical predictors. 

This module follows the one entitled: “SEM Essentials – Interpreting 

Path Coefficients”, which should be studied first.
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How do we interpret the effects of categorical predictors? 

• Binary categorical predictors are often coded as (0,1) variables.

• No statistical problems with using categorical predictors. Assumptions 

about error distributions are associated with response variables only.

• However, there are some issues related to interpretation of categorical 

effects, illustrated here.

• Good time for “range standardization”!

It would probably be helpful if you review the module on 

“Interpreting Path Coefficients” before going through this module.
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Scientists often use standardized coefficients for interpretation. 

However, when categorical predictors are involved, the interpretation 

of standardized coefficients becomes distorted. Here I show an easy 

way to address this problem. Along the way we peel back the cover on 

coefficients in general. 

Note: Here I only illustrate the situation where we have categorical 

predictors that are binary (0,1) or Yes/No. Sometimes variables can 

have more than two states and are classified as “ordered categorical”, 

e.g., “Low, Medium, High”. In such a case, there are two choices. First 

(and most general) is the option of converting your single variable with 

three states into three dummy variables, Low (0,1); Medium (0,1); and 

High (0.1). You would then include two of the three variables in your 

model. One dummy variable must be omitted from the model to avoid 

singularity. The omitted state becomes the baseline against which the 

others are compared. So, if you omitted Low, then the tests for Medium 

and High are tests for whether responses for those levels are greater 

than for the Low class. Second approach is to treat the effects of your 

ordered categorical predictor as linear and then you can simply allow it 

to have values of 0, 1, or 2. Now there is a single coefficient and we 

assume going from 0 to 2 is double that from 0 to 1.



Experiment involving ambient versus elevated CO2, 

a categorical variable.
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The data for this illustration are extracted from a study that included 

the doubling of atmospheric CO2. 

Reference for this work is:

Cherry, J.A., McKee, K.L., and Grace, J.B. 2009. Elevated CO2

enhances biological contributions to elevation change in coastal 

wetlands by offsetting stressors associated with sea-level rise. Journal 

of Ecology 97:67-77.

Note, this article was featured in Nature News April 9, 2009, featured 

in Nature Climate Change Research Highlights May 5, 2009, and was a 

USGS Science Newsroom Pick. 

http://www.nature.com/climate/2009/0905/full/climate.2009.32.html.
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Here I use a “net-effect” model to illustrate the principle.

The net effect was a greater ability of marsh sods to build soil elevation 

under elevated CO2.
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A box plot gives some sense of the span of values relative to the mean 

response to CO2 treatment.
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Graphical representation.

The original model was more complex than this and included mediating 

pathways. Here I show a “reduced-form” model that absorbs the full 

causal network into a net or total effect.

“Reduced-form” is a common term in the SEM literature for models 

that capture net effects while omitting at least one, but sometimes 

many mediating nodes.
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The data are simple, but the interpretation is particular.

View of the data*,

- 60 pots total

- CO2 treatment (0,1)

- ElevChange (mm)

“Cherry_etal_Categorical_Predictor_Illustration.csv”

*These data can be 

found in the notes 

section of this slide.

Data: 

Vars are: pot, CO2, ElevChange;

1,1,3.88141026; 2,1,1.33653846; 3,1,4.69230769; 4,1,18.3910256; 

5,1,44.0769231; 6,1,2.99038462; 7,1,0.46153846; 8,1,28.1538462; 

9,1,-2.3846154; 10,1,12.2307692; 11,1,41.1923077; 12,1,18.8461538; 

13,1,50.7307692; 14,1,1.19230769; 15,1,-0.8076923; 16,0,19.6538462; 

17,0,-4.5769231; 18,0,7.06153846; 19,0,-1.0384615; 20,0,1.07692308; 

21,0,-1.3461538; 22,0,1.80769231; 23,0,6.38461538; 24,0,25.9230769; 

25,0,-1.8461538; 26,0,40.4230769; 27,0,0.05448718; 28,0,28.8461538; 

29,0,4.30769231; 30,0,4.80769231; 31,1,-7; 32,1,7.61538462; 

33,1,19.5; 34,1,8.11538462; 35,1,0.15384615; 36,1,26.9020979; 

37,1,25.5153846; 38,1,0.76923077; 39,1,31.2307692; 

40,1,0.11538462; 41,1,21.6538462; 42,1,37.7307692; 

43,1,8.30769231;  44,1,5; 45,1,5.80769231; 46,0,3.4775641; 

47,0,-3.7692308;  48,0,31.7692308

Data from 

Cherry, J.A., McKee, K.L., and Grace, J.B. 2009. Journal of Ecology

97:67-77.
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lavaan coding is simple.

# specify model

mod <- 'ElevChange ~ CO2' 

# fit model

mod.fit <- sem(mod, data=dat)

# request output

summary(mod.fit, rsq=T, standardized=T)

CO2

Soil 

Elevation 

Change

Here I assume basic familiarity with lavaan. If you need a refresher, 

refer to the tutorial entitled “Introduction to lavaan”. 
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Results, showing standardized and unstandardized coefficients.

lavaan (0.5-15) converged normally after 1 iteration

Number of observations                            60

Estimator                                         ML

Minimum Function Test Statistic                0.000

Degrees of freedom                                 0

P-value (Chi-square)                           1.000

Estimate  Std.err  Z-value  P(>|z|) Std.lv Std.all

Regressions:

ElevChange ~

CO2          5.280    3.701    1.427    0.154    5.280  0.181

Variances:

ElevChange 205.457   37.511                    205.457  0.967

R-Square:

ElevChange        0.033

mean diff between CO2 treatments

Std.all uses the std.dev of CO2

The raw “Estimate” has a straightforward interpretation, the 

standardized relies on the std.dev of a categorial variable.

One should already be familiar with the difference between raw and 

standardized coefficients. Note that in lavaan, it prints two kinds of 

standardized coefficients, “Std.lv” and “Std.all”; the latter of these is 

what we want. 

The raw coefficient/estimate here is 5.280. Its interpretation is 

explained on the next page. 
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So, what is the problem with interpreting standardized 

coefficients based on categorical predictors?

Raw estimate (5.280) is the mean 

different between the treatments 

(in elevation units, mm).

This is straightforward to interpret, 

but would be hard to compare to 

other path coefficients that are in 

different units.

I provide a refresher on the relationship between raw and standardized 

parameters on the next page.

Some might be tempted to log-transform elevation change because of 

its distribution. However, we are interested in interpreting the 

coefficients in original  units and there is no biological reason to 

interpret the process of sediment building in log scale, so we will not.
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### Compute standardized coefficient by hand

est = 5.280

sd.elev <- sd(ElevChange)

sd.co2  <- sd(CO2)

std.all <- est*(sd.co2/sd.elev) 

print(std.all)

Remember, standardized parameters are in standard deviation 

units.

Here we reconstruct the standardized coefficient reported two slides ago.

> print(std.all)

[1] 0.181134

So, standardized coefficients are predicted changes in units of standard 

deviations (predicted sd change in y as function of sd change in x).

This material refers back to “SEM_1_6_Interpreting Coefficients”.
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So, we can think of standardized coefficients as similar* to predicted 

changes in y along its range as you vary x along its range. 

I propose that the interpretability of standardized coefficients 

depends on the fact that there is a relationship between standard 

deviations and ranges.

*Note that this only holds strictly for idealized Gaussian variables.

range

std dev

Generally, 6 standard deviations 

= 99% of the range for a true 

Gaussian distribution.
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There has been a lot of opposition to standardized coefficients from 

some statisticians. Scientists must find some way to move forward, 

nonetheless, which is why classical standardization is so popular. 
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The relationship between standard deviations and ranges does 

not hold consistently for categorical variables.

### What is sd of CO2 in this case?

print(sd.co2)

> print(sd.co2)

[1] 0.5042195

### What if we had a categorical variable with 

### unequal numbers of 0s and 1s?

new.cat <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1)

print(sd(new.cat))

> print(sd(new.cat))

[1] 0.3077935

For case of equal numbers of 0s and 1s, then std.dev = 0.5. Certainly not 

the case that 6 std.dev = 1 range, as is assumed for Gaussian variables.

The standard deviation of a categorical variable does not have the same 

meaning as that of a normal variable. Since the range of categoricals is 

fixed at 1, the relationship between std dev and range varies based on 

the frequency of 0s and 1s. – Not helpful!
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There is a useful alternative to conventional standardized 

coefficients – "defined difference standardization".

Defined-difference standardization provides a good option in this 

situation. Typically, the defined difference is the known range of values.

### Range standardization

range.elev <- max(ElevChange) - min(ElevChange)

range.co2  = 1

std.range <- est*(range.co2/range.elev)

print(std.range)

> print(std.range)

[1] 0.09145903

Here we show that the predicted change in elevation is 9% of its range if 

we double CO2.  

Source for this method is

Grace, J.B. and Bollen, K.A. 2005. Interpreting the results from 

multiple regression and structural equation models. Bulletin of the 

Ecological Society of America 86:283-295.

Historical note: This method was developed after studying Pedhazur’s 

book on statistics and his extended discussion of the problems of 

interpreting standardized coefficients.

Pedhazur, E.J. 1997. Multple Regression in Behavioral Research. 

Wadsworth Publishing; 3 edition. 
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When standardizing by ranges, we should confirm that the 

computed range for ElevChange is appropriate for 

interpretation.

The distribution of 

values across the range is 

reasonably continuous, 

which supports our use 

of range standardization. 

# R code to visualize

plot(ElevChange, pch=16)

I generally refer to this methodology as “relevant range” 

standardization. The investigator needs to select the relevant range for 

application of the coefficient. This need extends to raw coefficients as 

well, though that is rarely discussed. 

Note that the majority of values observed is in the lower end of the 

distribution because the distribution of treatment combinations, not 

because of non-linear response form.
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Graphical representation is now.

Effect is now in units of “change in soil elevation across its range” when 

CO2 is doubled. Can be compared among different pathways now.

0.09

We point out that this is a small amount and non-significant based on 

conventional criteria. When the impact of increasing CO2 is examined 

fully, however, there is a significant interactive effect that is hidden in this 

net effect (see Cherry et al. 2009. for the full story). 
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