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Why do we care about “Spatial Autocorrelation”?

Issues:

• The raw spatial autocorrelation in data is often explained by simply 

including the exogenous predictors in the model. Our statistical 

concern is whether there remains autocorrelation among residuals.

• The reason for our concern is that standard errors, and associated 

probabilities, depend on an assumption of independence among 

residuals.

• This module illustrates how to test and correct for spatial 
autocorrelation when using lavaan.

• The principles illustrated can be easily adapted to models developed 

outside of lavaan. 
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There are a number of good references on the topic of spatial 

autocorrelation, e.g.:

Dale, MRT and Fortin, MJ (2014) Spatial Analysis: A Guide for 

Ecologists. Cambridge University Press

Bivand, RS, Pebesma, E, and Gomez-Rubio, V (2013) Applied Spatial 

Data Analyses with R. Springer Verlag

Bordard, D, Gillet, F, Legendre, P (2011) Numerical Ecology with R. 

Springer Verlag
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What is the consequence of spatially-correlated residuals?

• According to Naroll (1961), one of the earliest pioneers in statistics, 

Sir Francis Galton raised the question of spatial autocorrelation in 

1889. Paraphrasing,

“Positive spatial dependence can reduce the amount of information 

in the observations because proximate observations can partly 

predict each other.” 

• The primary consequence of such reduced information can be 

expressed as a reduced “effective” sample size. 

• One solution is to estimate the magnitude of residual 

autocorrelation, compute the effective sample size, then replace the 

value of n (sample size) used for calculating standard errors and p-

values with the “effective n” (described more fully on next slide).

A historic reference on this topic is.

Raoul Naroll (1961). "Two solutions to Galton’s Problem". Philosophy 

of Science 28: 15–29. doi:10.1086/287778.
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What is the consequence of spatially-correlated residuals?

• The details of the issue are, of course, potentially more complex 

than will be considered here. There are a large number of texts on 

the subject. The procedures used here were taken from:

Bivand, RS, Pebesma, E, and Gomez-Rubio, V (2013) Applied Spatial 

Data Analyses with R. Springer Verlag

A nice discussion of the general issue can be found in:

Dale, MRT and Fortin, MJ (2014) Spatial Analysis: A Guide for 

Ecologists. Cambridge University Press
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I. The Basic Procedures:

1. Obtain model residuals for endogenous variables of concern.

2. Test for autocorrelation among residuals using Moran’s I test.

3. Determine the effective sample size from Moran’s I results. 

4. Adjust the standard errors for model parameters affected by the 

autocorrelation.

5. It is also possible to adjust AICc if you are using information and 

multimodel comparisons (not required if using AIC as it is 

sample-size independent). 
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It is important to keep in mind that we are discussing properties of the 

model residuals.

An overview of the process of adjustment is given here.



Example: Effects of Hurricane Sandy on Coastal Wetlands

Location markers 

represent 

monitoring sites 

where data were 

collected.

Track of the storm

Slide from Alice Yeates and Glenn Guntenspergen, USGS Patuxent

Wildlife Research Center shows the research situation. 
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Select Model(s) of Interest

There are two ways we can use estimates of effective sample size:

(1) to adjust standard errors and p-values for a single model

(2) to adjust AICc comparisons among multiple models.

For this abbreviated illustration, assume we have a model or models 

for comparison.
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### Model for potential adjustment

# model 1 

mod1 <-lm(change ~ dist.code + I(dist.code^2) + pos + rate.c + surge,

data = sandy.dat)

### Capture residuals

mod1.res <- resid(mod1)

8

Example Model of Interest
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We will need some model residuals to evaluate spatial autocorrelation.



Identifying Spatial Autocorrelation
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### Determine nearest neighbors from x, y coordinates

## Create x,y coordinate matrix

x       <- latitude

y       <- longitude

xydat <- cbind(x, y)

### Load needed library

library(spdep)

# identify k= nearest neighbors

xy.knn <- knearneigh(xydat,k=2)

# returns neighbors list 

xy.nb <- knn2nb(xy.knn)

Specifying Neighbor Relations

There are a number of ways of defining spheres of neighborhoods. Here we are 

examining correlations with a pre-identified number of nearest neighbors. 

Since the monitoring sites are spread along the coast, the neighbors will be 

located to either side (N or S) of one another, rather than in all directions. Most 

times I would choose k=4 to select the nearest neighbors, but here use k=2.
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We need measures of spatial location. This can be used to identify the 

matrix of neighbor relations. The spdep library has functions that 

determine a list of neighbors. 



11

### Moran’s test of model residuals (for mod1) 

### {requires residuals and neighbors list}

MoransResults <- moran.test(change.res1, nb2listw(xy.nb,

style="W"))

print(MoransResults)

> print(MoransResults)

Moran I test under randomisation

data:  change.res1  

weights: nb2listw(xy.nb, style = "W")    

Moran I statistic standard dev = 2.0619, p-value = 0.01961

sample estimates:

Moran I statistic       Expectation          Variance 

0.175939865      -0.009433962       0.008082731

Compute Moran's I

Significant residual autocorrelation is detected.

11

Moran’s I index quantifies the degree of spatially-structured correlation 

in a dataset. 

Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. 

Biometrika 37:17-23. 

http://en.wikipedia.org/wiki/Moran's_I. 

Formula for corrected sample size (Neff) is

Neff = N*((1-I)/(1+I))



Estimating Effective Sample Size

12
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### Computation of effective sample size

n = 107

eff_ss = round(n/(1+abs(MoransResults$estimate[1])))

print(eff_ss)

> ### Computation of effective sample size

> 91

Estimate Effective Sample Size

Full sample size for this example is 107.

Effective sample size is 91.
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There is a direct connection between Moran’s I and effective sample 

size, as shown in this equation. 

As given back in the notes to slide 11,

Formula for corrected sample size (Neff) is

Neff = N*((1-I)/(1+I))

where I = Moran’s I estimated value.



Adjusting Standard Errors and p-values
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The Adjustment Formula

The formula below can be used to adjust the standard errors associated 

with model parameters for the reduced effective sample size. 

(Note we intuitively expect standard errors to broaden with reduced 

sample size.)

𝑆𝐸𝑎𝑑𝑗 = 𝑆𝐸 ×
𝑁

𝑁𝑎𝑑𝑗

where:

SEadj is adjusted standard error,

SE is original standard error,

Nadj is the effective sample size, and

N is the observed sample size.
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A basic take home from this formula is that it takes a big drop in 

effective sample size, resulting from a large amount of residual spatial 

autocorrelation, to make a big change in standard errors. 

The effect = square root of the proportional overstatement of N.
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Adjusting Standard Errors (part 1)

### Adjust standard errors of model (mod1)

n = 107; n.adj = 91

# Formula for adjustment

se.adj = sqrt(n/n.adj) 

# Model

mod1 <- lm(change ~ dist.code +I(dist.code^2) +pos +rate.c

+surge, data=sem.vars) 

# Extract standard errors 

std.errors <- coef(summary(mod1))[, 2] 

print(std.errors)

16

First step in the adjustment process, shown here, involves getting some 

of the raw materials needed for the calculation:

- adjustment index

- unadjusted standard errors



17

Adjusting Standard Errors (part 2)

# Adjust standard errors

se1.adj = std.errors[1]*se.adj; 

se2.adj = std.errors[2]*se.adj; 

se3.adj = std.errors[3]*se.adj; 

se4.adj = std.errors[4]*se.adj; 

se5.adj = std.errors[5]*se.adj; 

se6.adj = std.errors[6]*se.adj;

# Print list adjusted standard errors 

std.errors.adjusted <- data.frame(se1.adj, se2.adj, se3.adj, 

se4.adj, se5.adj, se6.adj)

std.errors.adj.t <- t(std.errors.adjusted)

print(std.errors.adj.t)

17

This is just basic computational code.
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Adjusted Standard Errors

> print(std.errors.adj.t)

se1.adj   9.8787912

se2.adj  61.2413906

se3.adj  93.7365557

se4.adj   3.3908228

se5.adj   0.5107856

se6.adj   3.3763334

18

And here are adjusted standard errors, which will be used in next slide.
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Illustration of Adjusting p-values
### Calculate adjusted p-values for mod1

# get parameter estimates

mod1.ests <- coef(summary(mod1))[, 1] ; mod1.ests

mod1.est1 <- mod1.ests[1]

# compute adjusted p-value for intercept

se1.adj = 9.8787912 #from previous step

n.adj = 91

t1.adj = mod1.est1/se1.adj;

p1.adj <- 2*pt(-abs(t1.adj),df=n.adj-1); round(p1.adj, 4)

# compare to unadjusted (just for information sake)

round(coef(summary(mod1))[, 4], 4)

# proportional increase in p-value

0.9869/0.9858 #very very slight affect

> p1.adj <- 2*pt(-abs(t1.adj),df=n.adj-1); round(p1.adj, 4) 

0.9869

> # proportional increase in p-value

> 0.9869/0.9858 #very very slight affect

[1] 1.001116 

Note that the difference in p-value in this case is very small.
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The key here is the use of the base function “pt”, which returns the p-

value associated with a particular t-index and sample size.



Adjusting AICc Comparisons
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What if we are relying on AICc model comparisons to draw our 

inferences about what model to select for interpretation?
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Competing Models

### Competing Models

# Model 1

mod1 <-lm(change ~ dist.code + I(dist.code^2) + pos + rate.c

+ surge, data = sandy.dat)

# Model 2 – drop position variable

mod2 <-lm(change ~ dist.code + I(dist.code^2)       + rate.c

+ surge, data = sandy.dat)
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Here I just show a model with an important term dropped, which will 

be compared to our base model.

Note that to be extra careful, we could independent estimate the 

effective sample size for each of the models. Here I am not going to 

the trouble because it will not affect our model choice. 
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AICc Comparison Table

# AICc table

library(AICcmodavg) 

# compare models using AIC

aictab(list(mod1, mod2), c("Model 1", "Model 2")

Model selection based on AICc:

K   AICc Delta_AICc AICcWt Cum.Wt      LL

Model 1 7 844.72          0   0.98   0.98 -414.79

Model 2 6 852.72          8   0.02   1.00 -419.94

*Marc J. Mazerolle (2016) AICcmodavg: Model selection and 

multimodel inference based on (Q)AIC(c). R package version 2.0-4.

http://CRAN.R-project.org/package=AICcmodavg.
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The classic AIC is asymptotically unbiased. Thus, it makes sense 

to adjust for sample size in small samples (=AICc).

When the ratio of parameters to samples is large (i.e., information is 

low), we use

where q = number of estimated parameters in the model and

n = the number of samples





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


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AICAICc
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For moderate to small samples (250 samples or less), the AICc seems 

like a good choice for model selection. This of course depends on the 

complexity of the model being examined.

With the AICc, we adjust the AIC for the ratio of information/samples 

to parameters in the model. This is a reasonable suggestion because it 

takes information to estimate parameters and the ratio of information to 

parameters is a handy way to discuss sample size recommendations, 

though such things are truly not simple.

Anyway, the AICc has a more complex parsimony correction term than 

does the AIC (which is just 2q), as shown in the slide. 

(Note: AICc not theoretically defined for models with multivariate 

responses, included latent-variable models. It may be useful 

nonetheless.)
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Adjustment of AICc

### Adjustment

# Extract AIC values (these are not influenced by sample size)

mod1.AIC <- AIC(mod1) 

mod2.AIC <- AIC(mod2) 

# Bring in adjusted sample size estimate

n.adj = 91

# Extract number of parameters (K) in model from AICc table

mod1.num.params <- aictab(list(mod1), "Model 1")$K  #K1 = 7

mod2.num.params <- aictab(list(mod2), "Model 2")$K  #k2 = 6

# Compute adjusted AICc

mod1.AICc.adj <- mod1.AIC +((2*mod1.num.params*(mod1.num.params+1))

/(n.adj - mod1.num.params-1))

mod2.AICc.adj <- mod2.AIC +((2*mod2.num.params*(mod2.num.params+1))

/(n.adj - mod2.num.params-1))

# Compute AICc difference (model 1 minus model 2)

mod1.AICc.adj - mod2.AICc.adj


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




−−

+
+=

1
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qn

qq
AICAICc

> # Compute AICc difference (model 1 minus model 2)

> mod1.AICc.adj - mod2.AICc.adj

[1] -7.939585
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This code just implements the formula for a new AICc based on a 

reduced value of n.


