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This module deals with the case where two variables affect each other, 

aka reciprical interactions. The is a type of nonrecursive model. 

An appropriate general citation for this material is

Kline, R.B. 2011. Principles and Practice of Structural Equation 

Modeling. (third edition). Guilford Press, NY.
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> 1,000 plots, 39 sites

A Test

For a real-world SEM application involving reciprocal effects, refer to 

the paper shown here. This is a rather complex analysis based on a 

high-dimensional system of variables, so I will not present any of the 

details here. 
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causal diagram of 

reciprocal effects

y2t1

y1t1

The causal diagram (left fig) allows us to treat time in more 

explicit fashion and can help us understand models with causal 

loops (right fig).

y2t2

y1t2

time 1 time 2

static model 

of situation

y1t2

y2t2 2

1

The defining causal assumption is that manipulation of y1

can lead to change in y2 and vice versa. 

What is shown here is that so-called reciprocal effects in models (right 

figure) are actually what we call "cross-lag" effects when we explicitly 

consider time (left figure). When we have single-sample data there is a 

collapse of time in our model (on the right). 

There are strong assumptions that have to be made when interpreting 

SEM results from snap shot data. Interestingly, most of these 

assumptions have little to do with the causal loop, but spring entirely 

from the simultaneity of the measurements. The primary assumption is 

stationarity, which means the relationships among variables are 

consistent over time. 
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Houston, we have a problem! – Local non-identification

y1t2

y2t2 2

1 S =
𝑣𝑎𝑟1 𝑐𝑜𝑣12

𝑐𝑜𝑣12 𝑣𝑎𝑟2

෠Ε =
1 21

12 2

12 21

Observed covariance matrix S only has three 

unique elements, while the model-implied 

matrix ෠Ε has four unique parameters.

Even is we accept the assumption of stationarity and other statistical 

assumptions regarding errors, we cannot estimate two parameters from 

a single covariance (i.e., the parameters are not identified). As the next 

slides will show, this is potentially a solvable problem in SEM. 
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Inadequate specification.

y1

y2 2

1

12 21
x1

11

22

𝑦1 = 11𝑥1 + 21𝑦2 + 1

𝑦2 = 22𝑥1 + 12𝑦1 + 2
nonunique equations

If we bring in a third variable, we now have a 3X3 matrix, which has 

three off-diagonal covariances. In this case we are still under-

identified. and our equations are not unique.
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Minimal requirement for full model identification, unique 

predictors (“instruments”) for the reciprocating variables.

y1

y2 2

1

12 21

x1

x2

11

22

𝑦1 = 11𝑥1 + 21𝑦2 + 1

𝑦2 = 22𝑥2 + 12𝑦1 + 2
Unique equations

For identification, it is recognized that a minimum requirement is 

unique equations for each endogenous variable. This generally means 

some unique predictor for at least one of the variables involved in the 

reciprocal effect (a unique predictor for each, as shown here, is even 

better). 
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We assume, until we find otherwise, that the errors for the 

reciprocating variables may be correlated.

y1

y2 2

1

12 21

x1

x2

11

22

In a paper by

Wong, C.S. and Law, K.S. 1999. Testing reciprocal relations by 

nonrecursive structural equation models using cross-sectional data. 

Organizational Research Methods 2:69-87.

The authors explore a number of factors that influence the ability to 

extract proper estimates in such models of these. Among the things 

they show is that when there are correlated errors among the 

endogenous variables, as shown here, one should include the error 

correlation to obtain valid estimates. 
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California Grassland Example

Community
Richness
(R2=0.47)

.77

.14*

.70

-.35

.15

Soil
Suitability

Soil
Fertility

Community
Biomass
(R2=0.53)

It is traditionally assumed that this 
pattern fits the “humped-back 
model”, which has no diversity 
effect on production.

There has been a lot of debate over the effects of productivity/biomass 

on richness and vice versa. There are actually processes that can cause 

effects in both directions. Here is an example submodel extracted from 

a study 

Grace, James B., Susan Harrison, and Howard Cornell. "Is biotic 

resistance enhanced by natural variation in diversity?." Oikos 126, no. 

10 (2017): 1484-1492.

Using the methods described in modules dealing with Composites (and 

explicitly the methods shown in the Exercise using Two Composites), 

it is possible to identify the model and separate the effects that are 

confounded in univariate regression analyses.

In this example, the asterisk shows that the effect of Community 

Richness on Community Biomass is non-significant in this case.

The model is identified due to the weak correlation between

composites for soil fertility and soil suitability.

The ultimate test is whether the model achieves identification. If it 

does not, you will receive an error message.
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